class Junction

Logical superposition of values

class Junction is Mu { }

A junction is an unordered composite value of zero or more values. Junctions autothread over many operations, which means that the operation is carried out for each junction element (also known as eigenstate), and the result is junction of the return values of all those operators.

Junctions collapse into a single value in boolean context, so when used in a conditional, a negation or an explicit coercion to Bool through the `so` or `?` prefix operators. The semantics of this collapse depend on the junction type, which can be all, any, one or none.

type constructor operator True if ...
all all & no value evaluates to False
any any at least one value evaluates to True
one one ^ exactly one value evaluates to True
none none no value evaluates to True

Autothreading happens when a junction is bound to a parameter of a code object that doesn't accept values of type Junction. Instead of producing an error, the signature binding is repeated for each value of the junction.

Example:

my $j = 1|2;
if 3 == $j + 1 {
    say 'yes';
}

First autothreads over the infix:<+> operator, producing the Junction 2|3. The next autothreading step is over infix:<==> , which produces False|True. The if conditional evaluates the junction in boolean context, which collapses it to True. So the code prints yes\n.

Note that the compiler is allowed to parallelize and short-circuit autothreading (and Junction behavior in general), so it is usually an error to autothread junctions over code with side effects.

Junctions are meant to be used as matchers in boolean context; introspection of junctions is not supported. If you feel the urge to introspect a junction, use a Set or a related type instead.

Usage examples:

my @list = <1 2 "Great">;
@list.append(True).append(False);
my @bool_or_int = grep Bool|Int@list;
 
sub is_prime(Int $xreturns Bool {
    # 'so' is for boolean context 
    so $x %% none(2..$x.sqrt);
}
my @primes_ending_in_1 = grep &is_prime & / 1$ /2..100;
say @primes_ending_in_1;        # OUTPUT: «[11 31 41 61 71]␤» 
 
my @exclude = <~ .git>;
for dir("."{ say .Str if .Str.ends-with(none @exclude}

Special care should be taken when using all with arguments that may produce an empty list:

my @a = ();
say so all(@a# True, because there are 0 False's 

To express "all, but at least one", you can use @a && all(@a)

my @a = ();
say so @a && all(@a);   # OUTPUT: «False␤» 

Negated operators are special-cased when it comes to autothreading. $a !op $b is rewritten internally as !($a op $b). The outer negation collapses any junctions, so the return value always a plain Bool.

my $word = 'yes';
my @negations = <no none never>;
if $word !eq any @negations {
    say '"yes" is not a negation';
}

Note that without this special-casing, an expression like $word ne any @words would always evaluate to True for non-trivial lists on one side.

For this purpose, infix:<ne> counts as a negation of infix:<eq> .

In general it is more readable to use a positive comparison operator and a negated junction:

my $word = 'yes';
my @negations = <no none never>;
if $word eq none @negations {
    say '"yes" is not a negation';
}

Failures and Exceptions

Failures are just values like any other, as far as Junctions are concerned:

my $j = +any "not a number""42""2.1";
(gather $j».take).grep(Numeric).say# OUTPUT: «(42 2.1)␤» 

Above, we've used prefix + operator on a Junction to coerce the strings inside of it to Numeric. Since the operator returns a Failure when Str that doesn't contain a number gets coerced to Numeric, one of the elements in the Junction is a Failure, but same Failure rules as normal apply and the Failure doesn't explode just because it's in a Junction, and we can .grep it out. The exception will be thrown, if you try to use the Failure as a value—just like were this Failure on its own and not part of the Junction:

my $j = +any "not a number""42""2.1";
try say $j == 42;
$! and say "Got exception: $!.^name()"# OUTPUT: «Got exception: X::Str::Numeric␤» 

Note that if an exception gets thrown when any of the values in a Junction get computed, it will be thrown just as if the problematic value were computed on its own and not with a Junction; you can't just compute the values that work while ignoring exceptions:

sub calc ($_{ die when 13 }
my $j = any 1..42;
say try calc $j# OUTPUT: «Nil␤» 

Only one value above causes an exception, but the result of the try block is still a Nil. A possible way around it is to cheat and evaluate the values of the Junction individually and then re-create the Junction from the result:

sub calc ($_{ die when 13 }
my $j = any 1..42;
$j = any (gather $j».take).grep: {Nil !=== try calc $_};
say so $j == 42# OUTPUT: «True␤» 

See Also

Type Graph

Type relations for Junction
perl6-type-graph Junction Junction Mu Mu Junction->Mu

Stand-alone image: vector

Routines supplied by class Mu

Junction inherits from class Mu, which provides the following methods:

(Mu) routine defined

multi sub    defined(Mu --> Bool:D)
multi method defined(   --> Bool:D)

Returns False on the type object, and True otherwise.

say Int.defined;                # OUTPUT: «False␤» 
say 42.defined;                 # OUTPUT: «True␤» 

Very few types (like Failure) override defined to return False even for instances:

sub fails() { fail 'oh noe' };
say fails().defined;            # OUTPUT: «False␤» 

(Mu) routine isa

multi method isa(Mu $type     --> Bool:D)
multi method isa(Str:D $type  --> Bool:D)

Returns True if the invocant is an instance of class $type, a subset type or a derived class (through inheritance) of $type.

my $i = 17;
say $i.isa("Int");   # OUTPUT: «True␤» 
say $i.isa(Any);     # OUTPUT: «True␤» 

A more idiomatic way to do this is to use the smartmatch operator ~~ instead.

my $s = "String";
say $s ~~ Str;       # OUTPUT: «True␤» 

(Mu) routine does

method does(Mu $type --> Bool:D)

Returns True if and only if the invocant conforms to type $type.

my $d = Date.new('2016-06-03');
say $d.does(Dateish);             # True    (Date does role Dateish) 
say $d.does(Any);                 # True    (Date is a subclass of Any) 
say $d.does(DateTime);            # False   (Date is not a subclass of DateTime) 

Using the smart match operator ~~ is a more idiomatic alternative.

my $d = Date.new('2016-06-03');
say $d ~~ Dateish;                # OUTPUT: «True␤» 
say $d ~~ Any;                    # OUTPUT: «True␤» 
say $d ~~ DateTime;               # OUTPUT: «False␤» 

(Mu) routine Bool

multi sub    Bool(Mu --> Bool:D)
multi method Bool(   --> Bool:D)

Returns False on the type object, and True otherwise.

Many built-in types override this to be False for empty collections, the empty string or numerical zeros

say Mu.Bool;                    # OUTPUT: «False␤» 
say Mu.new.Bool;                # OUTPUT: «True␤» 
say [123].Bool;             # OUTPUT: «True␤» 
say [].Bool;                    # OUTPUT: «False␤» 
say %hash => 'full' ).Bool;   # OUTPUT: «True␤» 
say {}.Bool;                    # OUTPUT: «False␤» 
say "".Bool;                    # OUTPUT: «False␤» 
say 0.Bool;                     # OUTPUT: «False␤» 
say 1.Bool;                     # OUTPUT: «True␤» 
say "0".Bool;                   # OUTPUT: «True␤» 

(Mu) method Capture

Defined as:

method Capture(Mu:D: --> Capture:D)

Returns a Capture with named arguments corresponding to invocant's public attributes:

class Foo {
    has $.foo = 42;
    has $.bar = 70;
    method bar { 'something else' }
}.new.Capture.say# OUTPUT: «\(:bar("something else"), :foo(42))␤» 

(Mu) method Str

multi method Str(--> Str)

Returns a string representation of the invocant, intended to be machine readable. Method Str warns on type objects, and produces the empty string.

say Mu.Str;                     # Use of uninitialized value of type Mu in string context. 

(Mu) routine gist

multi sub    gist(+args --> Str)
multi method gist(   --> Str)

Returns a string representation of the invocant, optimized for fast recognition by humans. As such lists will be truncated at 100 elements. Use .perl to get all elements.

The default gist method in Mu re-dispatches to the perl method for defined invocants, and returns the type name in parenthesis for type object invocants. Many built-in classes override the case of instances to something more specific that may truncate output.

gist is the method that say calls implicitly, for non-Str types, so say $something and say $something.gist generally produce the same output.

say Mu.gist;        # OUTPUT: «(Mu)␤» 
say Mu.new.gist;    # OUTPUT: «Mu.new␤» 

(Mu) routine perl

multi method perl(--> Str)

Returns a Perlish representation of the object (i.e., can usually be re-evaluated with EVAL to regenerate the object). The exact output of perl is implementation specific, since there are generally many ways to write a Perl expression that produces a particular value

(Mu) method item

method item(Mu \item:is raw

Forces the invocant to be evaluated in item context and returns the value of it.

say [1,2,3].item.perl;          # OUTPUT: «$[1, 2, 3]␤» 
say %apple => 10 ).item.perl# OUTPUT: «${:apple(10)}␤» 
say "abc".item.perl;            # OUTPUT: «"abc"␤» 

(Mu) method self

method self(--> Mu)

Returns the object it is called on.

(Mu) method clone

method clone(*%twiddles)

Creates a shallow clone of the invocant, including shallow cloning of private attributes. Alternative values for public attributes can be provided via named arguments with names matching the attributes' names.

class Point2D {
    has ($.x$.y);
    multi method gist(Point2D:D:{
        "Point($.x$.y)";
    }
}
 
my $p = Point2D.new(x => 2=> 3);
 
say $p;                     # OUTPUT: «Point(2, 3)␤» 
say $p.clone(=> -5);      # OUTPUT: «Point(2, -5)␤» 

Note that .clone does not go the extra mile to shallow-copy @. and %. sigiled attributes and, if modified, the modifications will still be available in the original object:

class Foo {
    has $.foo is rw = 42;
    has &.boo is rw = { say "Hi" };
    has @.bar       = <a b>;
    has %.baz       = <a b c d>;
}
 
my $o1 = Foo.new;
with my $o2 = $o1.clone {
    .foo = 70;
    .bar = <Z Y>;
    .baz = <Z Y X W>;
    .boo = { say "Bye" };
}
 
# Hash and Array attribute modifications in clone appear in original as well: 
say $o1;    # OUTPUT: «Foo.new(foo => 42, bar => ["Z", "Y"], baz => {:X("W"), :Z("Y")}, …␤» 
say $o2;    # OUTPUT: «Foo.new(foo => 70, bar => ["Z", "Y"], baz => {:X("W"), :Z("Y")}, …␤» 
$o1.boo.(); # OUTPUT: «Hi␤» 
$o2.boo.(); # OUTPUT: «Bye␤» 

To clone those, you could implement your own .clone that clones the appropriate attributes and passes the new values to Mu.clone, for example, via nextwith. Alternatively, your own .clone could clone self first (using self.Mu::clone or callsame) and then manipulate the clone as needed, before returning it.

class Bar {
    has @.foo = <a b>;
    has %.bar = <a b c d>;
    method clone { nextwith :foo(@!foo.clone:bar(%!bar.clone}
}
 
my $o1 = Bar.new;
with my $o2 = $o1.clone {
    .foo = <Z Y>;
    .bar = <Z Y X W>;
}
 
# Hash and Array attribute modifications in clone do not affect original: 
say $o1# OUTPUT: «Bar.new(foo => ["a", "b"], bar => {:a("b"), :c("d")})␤» 
say $o2# OUTPUT: «Bar.new(foo => ["Z", "Y"], bar => {:X("W"), :Z("Y")})␤» 

(Mu) method new

multi method new(*%attrinit)

Default method for constructing (create + initialize) new objects of a class. This method expects only named arguments which are then used to initialize attributes with accessors of the same name.

Classes may provide their own new method to override this default.

new triggers an object construction mechanism that calls submethods named BUILD in each class of an inheritance hierarchy, if they exist. See the documentation on object construction for more information.

(Mu) method bless

method bless(*%attrinit --> Mu:D)

Lower-level object construction method than new.

Creates a new object of the same type as the invocant, uses the named arguments to initialize attributes, and returns the created object.

You can use this method when writing custom constructors:

class Point {
    has $.x;
    has $.y;
    multi method new($x$y{
        self.bless(:$x:$y);
    }
}
my $p = Point.new(-11);

(Though each time you write a custom constructor, remember that it makes subclassing harder).

(Mu) method CREATE

method CREATE(--> Mu:D)

Allocates a new object of the same type as the invocant, without initializing any attributes.

say Mu.CREATE.defined;  # OUTPUT: «True␤» 

(Mu) method print

multi method print(--> Bool:D)

Prints value to $*OUT after stringification using .Str method without adding a newline at end.

"abc\n".print;          # RESULT: «abc␤» 

(Mu) method put

multi method put(--> Bool:D)

Prints value to $*OUT, adding a newline at end, and if necessary, stringifying non-Str object using the .Str method.

"abc".put;              # RESULT: «abc␤» 

(Mu) method say

multi method say(--> Bool:D)

Prints value to $*OUT after stringification using gist method with newline at end. To produce machine readable output use .put.

say 42;                 # OUTPUT: «42␤» 

(Mu) method ACCEPTS

multi method ACCEPTS(Mu:U: $other)

ACCEPTS is the method that smart matching with the infix ~~ operator and given/when invokes on the right-hand side (the matcher).

The Mu:U multi performs a type check. Returns True if $other conforms to the invocant (which is always a type object or failure).

say 42 ~~ Mu;           # OUTPUT: «True␤» 
say 42 ~~ Int;          # OUTPUT: «True␤» 
say 42 ~~ Str;          # OUTPUT: «False␤» 

Note that there is no multi for defined invocants; this is to allow autothreading of junctions, which happens as a fallback mechanism when no direct candidate is available to dispatch to.

(Mu) method WHICH

multi method WHICH(--> ObjAt:D)

Returns an object of type ObjAt which uniquely identifies the object. Value types override this method which makes sure that two equivalent objects return the same return value from WHICH.

say 42.WHICH eq 42.WHICH;       # OUTPUT: «True␤» 

(Mu) method WHERE

method WHERE(--> Int)

Returns an Int representing the memory address of the object.

(Mu) method WHY

multi method WHY(--> Pod::Block::Declarator)

Returns the attached Pod::Block::Declarator.

For instance:

#| Initiate a specified spell normally 
sub cast(Spell $s{
  do-raw-magic($s);
}
#= (do not use for class 7 spells) 
say &cast.WHY;
# OUTPUT: «Initiate a specified spell normally␤(do not use for class 7 spells)␤» 

See Pod declarator blocks for details about attaching Pod to variables, classes, functions, methods, etc.

(Mu) trait is export

multi sub trait_mod:<is>(Mu:U \type:$export!)

Marks a type as being exported, that is, available to external users.

my class SomeClass is export { }

A user of a module or class automatically gets all the symbols imported that are marked as is export.

See Exporting and Selective Importing Modules for more details.

(Mu) method return

method return()

The method return will stop execution of a subroutine or method, run all relevant phasers and provide invocant as a return value to the caller. If a return type constraint is provided it will be checked unless the return value is Nil. A control exception is raised and can be caught with CONTROL.

sub f { (1|2|3).return };
say f(); # OUTPUT: «any(1, 2, 3)␤» 

(Mu) method return-rw

Same as method return except that return-rw returns a writable container to the invocant (see more details here: return-rw).

(Mu) method emit

method emit()

Emits the invocant into the enclosing supply or react block.

react { whenever supply { .emit for "foo"42.5 } {
    say "received {.^name} ($_)";
}}
 
# OUTPUT: 
# received Str (foo) 
# received Int (42) 
# received Rat (0.5) 

(Mu) method take

method take()

Returns the invocant in the enclosing gather block.

sub insert($sep+@list{
    gather for @list {
        FIRST .takenext;
        take slip $sep.item
    }
}
 
say insert ':', <a b c>;
# OUTPUT: «(a : b : c)␤» 

(Mu) routine take

sub take(\item)

Takes the given item and passes it to the enclosing gather block.

#| randomly select numbers for lotto 
my $num-selected-numbers = 6;
my $max-lotto-numbers = 49;
gather for ^$num-selected-numbers {
    take (1 .. $max-lotto-numbers).pick(1);
}.say;    # six random values 

(Mu) routine take-rw

sub take-rw(\item)

Returns the given item to the enclosing gather block, without introducing a new container.

my @a = 1...3;
sub f(@list){ gather for @list { take-rw $_ } };
for f(@a{ $_++ };
say @a;
# OUTPUT: «[2 3 4]␤» 

(Mu) method so

method so()

Returns a Bool value representing the logical non-negation of an expression. One can use this method similarly to the English sentence: "If that is so, then do this thing". For instance,

my @args = <-a -e -b -v>;
my $verbose-selected = any(@argseq '-v' | '-V';
if $verbose-selected.so {
    say "Verbose option detected in arguments";
} # OUTPUT: «Verbose option detected in arguments␤» 

(Mu) method not

method not()

Returns a Bool value representing the logical negation of an expression. Thus it is the opposite of so.

my @args = <-a -e -b>;
my $verbose-selected = any(@argseq '-v' | '-V';
if $verbose-selected.not {
    say "Verbose option not present in arguments";
} # OUTPUT: «Verbose option not present in arguments␤» 

Since there is also a prefix version of not, the above code reads better like so:

my @args = <-a -e -b>;
my $verbose-selected = any(@argseq '-v' | '-V';
if not $verbose-selected {
    say "Verbose option not present in arguments";
} # OUTPUT: «Verbose option not present in arguments␤»