class Complex is Cool does Numeric {}

Represents a number in the complex plane.

Complex objects are immutable.

Operators§

postfix i§

Adding a trailing i to a number literal makes it a Complex, for example:

say 2i;     # same as Complex.new(0, 2); 
say 1-2e3i; # same as Complex.new(1, -2e3);

Methods§

method new§

multi method new(Real $reReal $im --> Complex:D)

Creates a new Complex object from real and imaginary parts.

my $complex = Complex.new(11);
say $complex;    # OUTPUT: «1+1i␤»

When created without arguments, both parts are considered to be zero.

say Complex.new# OUTPUT: «0+0i␤»

method re§

method re(Complex:D: --> Real:D)

Returns the real part of the complex number.

say (3+5i).re;    # OUTPUT: «3␤»

method im§

method im(Complex:D: --> Real:D)

Returns the imaginary part of the complex number.

say (3+5i).im;    # OUTPUT: «5␤»

method reals§

method reals(Complex:D: --> Positional:D)

Returns a two-element list containing the real and imaginary parts for this value.

say (3+5i).reals;    # OUTPUT: «(3 5)␤»

method isNaN§

method isNaN(Complex:D: --> Bool:D)

Returns true if the real or imaginary part is NaN (not a number).

say (NaN+5i).isNaN# OUTPUT: «True␤» 
say (7+5i).isNaN;   # OUTPUT: «False␤»

method polar§

method polar(Complex:D: --> Positional:D)

Returns a two-element list of the polar coordinates for this value, i.e. magnitude and angle in radians.

say (10+7i).polar# OUTPUT: «(12.2065556157337 0.610725964389209)␤»

method floor§

method floor(Complex:D: --> Complex:D)

Returns self.re.floor + self.im.floor. That is, each of the real and imaginary parts is rounded to the highest integer not greater than the value of that part.

say (1.2-3.8i).floor;           # OUTPUT: «1-4i␤»

method ceiling§

method ceiling(Complex:D: --> Complex:D)

Returns self.re.ceiling + self.im.ceiling. That is, each of the real and imaginary parts is rounded to the lowest integer not less than the value of that part.

say (1.2-3.8i).ceiling;         # OUTPUT: «2-3i␤»

routine sign§

method sign(Complex:D: --> Complex:D)
multi  sign(Complex:D $z --> Complex:D)

Returns 0i if the absolute value of the complex number is 0. Otherwise returns the complex number divided by its absolute value (the unit complex number in the same direction as $z).

Available as of 6.e language version (early implementation exists in Rakudo compiler 2023.02+).

method round§

multi method round(Complex:D: --> Complex:D)
multi method round(Complex:D: Real() $scale --> Complex:D)

With no arguments, rounds both the real and imaginary parts to the nearest integer and returns a new Complex number. If $scale is given, rounds both parts of the invocant to the nearest multiple of $scale. Uses the same algorithm as Real.round on each part of the number.

say (1.2-3.8i).round;           # OUTPUT: «1-4i␤» 
say (1.256-3.875i).round(0.1);  # OUTPUT: «1.3-3.9i␤»

method truncate§

method truncate(Complex:D: --> Complex:D)

Removes the fractional part of both the real and imaginary parts of the number, using Real.truncate, and returns the result as a new Complex.

say (1.2-3.8i).truncate;        # OUTPUT: «1-3i␤»

routine abs§

method abs(Complex:D: --> Num:D)
multi  abs(Complex:D $z --> Num:D)

Returns the absolute value of the invocant (or the argument in sub form). For a given complex number $z the absolute value |$z| is defined as sqrt($z.re * $z.re + $z.im * $z.im).

say (3+4i).abs;                 # OUTPUT: «5␤» 
                                # sqrt(3*3 + 4*4) == 5

method conj§

method conj(Complex:D: --> Complex:D)

Returns the complex conjugate of the invocant (that is, the number with the sign of the imaginary part negated).

say (1-4i).conj;                # OUTPUT: «1+4i␤»

method sqrt§

method sqrt(Complex:D: --> Complex:D)

Returns the complex square root of the invocant, i.e. the root where the real part is ≥ 0 and the imaginary part has the same sign as the imaginary part of the invocant.

say (3-4i).sqrt;                # OUTPUT: «2-1i␤» 
say (-3+4i).sqrt;               # OUTPUT: «1+2i␤»

method gist§

method gist(Complex:D: --> Str:D)

Returns a string representation of the form "1+2i", without internal spaces. (Str coercion also returns this.)

say (1-4i).gist;                # OUTPUT: «1-4i␤»

method raku§

method raku(Complex:D: --> Str:D)

Returns an implementation-specific string that produces an equivalent object when given to EVAL.

say (1-3i).raku;                # OUTPUT: «<1-3i>␤»

method Real§

multi method Real(Complex:D: --> Num:D)
multi method Real(Complex:U: --> Num:D)

Coerces the invocant to Num. If the imaginary part isn't approximately zero, coercion fails with X::Numeric::Real.

The :D variant returns the result of that coercion. The :U variant issues a warning about using an uninitialized value in numeric context and then returns value 0e0.

sub infix:<**>§

multi infix:<**>(Complex:D \aComplex:D \b --> Complex:D)
multi infix:<**>(Num(Real) \aComplex:D \b --> Complex:D)
multi infix:<**>(Complex:D \aNum(Real) \b --> Complex:D)

The exponentiation operator coerces the second argument to Complex and calculates the left-hand-side raised to the power of the right-hand side. Since 6.d, either argument can be equal to zero.

say i ** i;   # OUTPUT: «0.20787957635076193+0i␤» 
say 2 ** i;   # OUTPUT: «0.7692389013639721+0.6389612763136348i␤» 
say i ** 2;   # OUTPUT: «-1+1.2246467991473532e-16i␤» 
say 0 ** i;   # OUTPUT: «0+0i␤» 
say 0** 0i; # OUTPUT: «1+0i␤»

Typegraph§

Type relations for Complex
raku-type-graph Complex Complex Cool Cool Complex->Cool Numeric Numeric Complex->Numeric Mu Mu Any Any Any->Mu Cool->Any Stringy Stringy Str Str Str->Cool Str->Stringy Allomorph Allomorph Allomorph->Str ComplexStr ComplexStr ComplexStr->Complex ComplexStr->Allomorph

Expand chart above