class NumStr

Dual value floating-point number and string

class NumStr is Num is Str { }

The dual value types (often referred to as allomorphs) allow for the representation of a value as both a string and a numeric type, typically they will be created for you when the context is "stringy" but they can be determined to be numbers, such as in some quoting constructs:

my $f = <42.1e0>say $f.^name# OUTPUT: «NumStr␤» 

As a subclass of both Num and Str, a NumStr will be accepted where either is expected. However, NumStr does not share object identity with Num- or Str-only variants:

my $num-str = <42e10>;
my Num $num = $num-str# OK! 
my Str $str = $num-str# OK! 
say 42e10  <42e10  55  1># False; ∈ operator cares about object identity 

Methods

method new

method new(Num $iStr $s)

The constructor requires both the Num and the Str value, when constructing one directly the values can be whatever is required:

my $f = NumStr.new(42.1e0"forty two and a bit");
say +$f# OUTPUT: «42.1␤» 
say ~$f# OUTPUT: «"forty two and a bit"␤» 

method Bool

Defined as:

multi method Bool(NumStr:D: --> Bool:D)

This method may be provided by the parent classes and not implemented in NumStr directly.

Returns False if the invocant is numerically ±0e0, otherwise returns True. String portion is not considered.

method Num

method Num

Returns the Num value of the NumStr.

method Numeric

Defined as:

multi method Numeric(NumStr:D: --> Num:D)
multi method Numeric(NumStr:U: --> Num:D)

The :D variant returns the numeric portion of the invocant. The :U variant issues a warning about using an uninitialized value in numeric context and then returns value 0e0.

method Real

Defined as:

multi method Real(NumStr:D: --> Num:D)
multi method Real(NumStr:U: --> Num:D)

The :D variant returns the numeric portion of the invocant. The :U variant issues a warning about using an uninitialized value in numeric context and then returns value 0e0.

method Str

Returns the string value of the NumStr.

method ACCEPTS

Defined as:

multi method ACCEPTS(NumStr:D: Any:D $value)

If $value is Numeric (including another allomorph), checks if invocant's Numeric part ACCEPTS the $value. If $value is Str, checks if invocant's Str part ACCEPTS the $value. If value is anything else, checks if both Numeric and Str parts ACCEPTS the $value.

say <5e0> ~~ "5.0"# OUTPUT: «False␤» 
say <5e0> ~~  5.0 ; # OUTPUT: «True␤» 
say <5e0> ~~ <5.0># OUTPUT: «True␤» 

Operators

infix cmp

multi sub infix:<cmp>(NumStr:D $aNumStr:D $b)

Compare two NumStr objects. The comparison is done on the Num value first and then on the Str value. If you want to compare in a different order then you would coerce to a Num or Str value first:

my $f = NumStr.new(42.1e0"smaller");
my $g = NumStr.new(43.1e0"larger");
say $f cmp $g;          # OUTPUT: «Less␤» 
say $f.Str cmp $g.Str;  # OUTPUT: «More␤» 

Type Graph

Type relations for NumStr
perl6-type-graph NumStr NumStr Num Num NumStr->Num Str Str NumStr->Str Mu Mu Any Any Any->Mu Cool Cool Cool->Any Numeric Numeric Real Real Real->Numeric Num->Cool Num->Real Stringy Stringy Str->Cool Str->Stringy

Expand above chart

Routines supplied by class Num

NumStr inherits from class Num, which provides the following routines:

(Num) method rand

method rand(Num:D: --> Num)

Returns a pseudo random number between 0 and the invocant.

(Num) sub srand

sub srand(Int $seed --> Int:D)

Seeds the pseudo random number generator used by Num.rand with the provided value. Note that srand is called with a platform dependent value when a Perl 6 program is started.

(Num) method Capture

Defined as:

method Capture()

Throws X::Cannot::Capture.

Routines supplied by role Real

NumStr inherits from class Num, which does role Real, which provides the following routines:

(Real) method Bridge

Defined as:

method Bridge(Real:D:)

Default implementation coerces the invocant to Num and that's the behaviour of this method in core Real types. This method primarily exist to make it easy to implement custom Real types by users, with the Bridge method returning one of the core Real types (NOT necessarily a Num) that best represent the custom Real type. In turn, this lets all the core operators and methods obtain a usable value they can work with.

As an example, we can implement a custom Temperature type. It has a unit of measure and the value, which are given during instantiation. We can implement custom operators or conversion methods that work with this type. When it comes to regular mathematical operators, however, we can simply use the .Bridge method to convert the Temperature to Kelvin expressed in one of the core numeric types:

class Temperature is Real {
    has Str:D  $.unit  is required where any <K F C>;
    has Real:D $.value is required;
    method new ($value:$unit = 'K'{ self.bless :$value :$unit }
    # Note: implementing .new() that handles $value of type Temperature is left as an exercise 
 
    method Bridge {
        when $!unit eq 'F' { ($!value + 459.67) × 5/9 }
        when $!unit eq 'C' {  $!value + 273.15 }
        $!value
    }
    method gist { self.Str }
    method Str  { "$!value degrees $!unit" }
}
 
sub postfix:<> { Temperature.new: $^value:unit<C> }
sub postfix:<> { Temperature.new: $^value:unit<F> }
sub postfix:<K> { Temperature.new: $^value:unit<K> }
 
my $human := 36.6℃;
my $book  := 451℉;
my $sun   := 5778K;
say $human;                # OUTPUT: «36.6 degrees C␤» 
say $human + $book + $sun# OUTPUT: «6593.677777777778␤» 
say 123+ 456K;           # OUTPUT: «579␤» 

As we can see from the last two lines of the output, the type of the bridged result is not forced to be any particular core type. It is a Rat, when we instantiated Temperature with a Rat or when conversion was involved, and it is an Int when we instantiated Temperature with an Int.

(Real) method Complex

method Complex(Real:D: --> Complex:D)

Converts the number to a Complex with the number converted to a Num as its real part and 0e0 as the imaginary part.

(Real) method Rat

method Rat(Real:D: Real $epsilon = 1e-6)

Converts the number to a Rat with the precision $epsilon.

(Real) method Real

Defined as:

multi method Real(Real:D: --> Real:D)
multi method Real(Real:U: --> Real:D)

The :D variant simply returns the invocant. The :U variant issues a warning about using an uninitialized value in numeric context and then returns self.new.

(Real) routine rand

sub term:<rand> (--> Num:D)
method rand(Real:D: --> Real:D)

Returns a pseudo-random number between zero (inclusive) and the number (non-inclusive). The Bridge method is used to coerce the Real to a numeric that supports rand method.

The term form returns a pseudo-random Num between 0e0 (inclusive) and 1e0 (non-inclusive.)

(Real) method sign

method sign(Real:D:)

Returns -1 if the number is negative, 0 if it is zero and 1 otherwise.

(Real) method round

method round(Real:D: $scale = 1)

Rounds the number to scale $scale. If $scale is 1, rounds to an integer. If scale is 0.1, rounds to one digit after the comma etc.

(Real) method floor

method floor(Real:D --> Int:D)

Return the largest integer not greater than the number.

(Real) method ceiling

method ceiling(Real:D --> Int:D)

Returns the smallest integer not less than the number.

(Real) method truncate

method truncate(Real:D --> Int:D)

Rounds the number towards zero.

(Real) method polymod

method polymod(Real:D: +@mods)

Returns the remainders after applying sequentially all divisors in the @mods argument; the last element of the array will be the last remainder.

say (1e8+1).polymod(10 xx 8);# OUTPUT: «(1 0 0 0 0 0 0 0 1)␤» 

10 xx 8 is simply an array with eight number 10s; the first division by 10 will return 1 as a remainder, while the rest, up to the last, will return 0. With 8 divisors, as above, the result will have one more elements, in this case for the last remainder.

(Real) method base

method base(Real:D: Int:D $base where 2..36$digits? --> Str:D)

Converts the number to a string, using $base as base. For $base larger than ten, capital Latin letters are used.

255.base(16);            # 'FF' 

The optional $digits argument asks for that many digits of fraction (which may not be negative). If omitted, a reasonable default is chosen based on type. For Int this default is 0. For Num, the default is 8. For Rational, the number of places is scaled to the size of the denominator, with a minimum of 6.

A special value of Whatever (*) can be given as $digits, which functions the same as when $digits is not specified for all Real types except the Rationals. For Rationals, the Whatever indicates that you wish all of the possible digits of the fractional part, but use caution: since there's no detection of repeating fractional parts (the algorithm will eventually stop after generating 2**63 digits).

The final digit produced is always rounded.

say pi.base(103);      # OUTPUT: «3.142␤» 
say (1/128).base(10*); # OUTPUT: «0.0078125␤» 
say (1/100).base(10*); # OUTPUT: «0.01␤» 
say (1/3)  .base(10*); # WRONG: endlessly repeating fractional part 

For reverse operation, see parse-base

Routines supplied by class Str

NumStr inherits from class Str, which provides the following routines:

(Str) routine chop

multi method chop(Str:D:)
multi method chop(Str:D: Int() $chopping)

Returns the string with $chopping characters removed from the end.

say "Whateverable".chop(3.6);# OUTPUT: «Whatevera␤» 
my $string= "Whateverable";
say $string.chop("3");       # OUTPUT: «Whatevera␤» 

The $chopping positional is converted to Int before being applied to the string.

(Str) routine chomp

Defined as:

multi sub    chomp(Str:D  --> Str:D)
multi method chomp(Str:D: --> Str:D)

Returns the string with a logical newline (any codepoint that has the NEWLINE property) removed from the end.

Examples:

say chomp("abc\n");       # OUTPUT: «abc␤» 
say "def\r\n".chomp;      # OUTPUT: «def␤» NOTE: \r\n is a single grapheme! 
say "foo\r".chomp;        # OUTPUT: «foo␤» 

(Str) method contains

Defined as:

multi method contains(Str:D: Cool:D $needle)
multi method contains(Str:D: Str:D $needle)
multi method contains(Str:D: Cool:D $needleInt(Cool:D$pos)
multi method contains(Str:D: Str:D $needleInt:D $pos)

Coerces the invocant (represented in the signature by Str:D: and first argument (which we are calling $needle) to Str (if it's not already, that is, the first and third multi), and searches for $needle in the string starting from $pos characters into the string. Returns True if $needle is found. $pos is an optional parameter, and if it's not present, contains will search from the beginning of the string (using the first two forms of the multi).

say <Hello, World>.contains('Hello'0);   # OUTPUT: «True␤» 
say "Hello, World".contains('Hello');      # OUTPUT: «True␤» 
say "Hello, World".contains('hello');      # OUTPUT: «False␤» 
say "Hello, World".contains('Hello'1);   # OUTPUT: «False␤» 
say "Hello, World".contains(',');          # OUTPUT: «True␤» 
say "Hello, World".contains(','3);       # OUTPUT: «True␤» 
say "Hello, World".contains(','10);      # OUTPUT: «False␤» 

In the first example, coertion is used to convert a List to a Str. In the 4th case, the 'Hello' string is not found since we have started looking at the second position in it (index 1). Note that because of how a List or Array is coerced into a Str, the results may sometimes be surprising. See traps.

(Str) routine lc

Defined as:

multi sub    lc(Str:D  --> Str:D)
multi method lc(Str:D: --> Str:D)

Returns a lower-case version of the string.

Examples:

lc("A"); # RESULT: «"a"» 
"A".lc;  # RESULT: «"a"» 

(Str) routine uc

multi sub    uc(Str:D  --> Str:D)
multi method uc(Str:D: --> Str:D)

Returns an uppercase version of the string.

(Str) routine fc

multi sub    fc(Str:D  --> Str:D)
multi method fc(Str:D: --> Str:D)

Does a Unicode "fold case" operation suitable for doing caseless string comparisons. (In general, the returned string is unlikely to be useful for any purpose other than comparison.)

(Str) routine tc

multi sub    tc(Str:D  --> Str:D)
multi method tc(Str:D: --> Str:D)

Does a Unicode "titlecase" operation, that is changes the first character in the string to title case, or to upper case if the character has no title case mapping

(Str) routine tclc

multi sub    tclc(Str:D  --> Str:D)
multi method tclc(Str:D: --> Str:D)

Turns the first character to title case, and all other characters to lower case

(Str) routine wordcase

multi sub    wordcase(Cool $x  --> Str)
multi sub    wordcase(Str:D $x --> Str)
multi method wordcase(Str:D: :&filter = &tclcMu :$where = True --> Str)

Returns a string in which &filter has been applied to all the words that match $where. By default, this means that the first letter of every word is capitalized, and all the other letters lowercased.

(Str) method unival

multi method unival(Str:D --> Numeric)

Returns the numeric value that the first codepoint in the invocant represents, or NaN if it's not numeric.

say '4'.unival;     # OUTPUT: «4␤» 
say '¾'.unival;     # OUTPUT: «0.75␤» 
say 'a'.unival;     # OUTPUT: «NaN␤» 

(Str) method univals

multi method univals(Str:D --> List)

Returns a list of numeric values represented by each codepoint in the invocant string, and NaN for non-numeric characters.

say "4a¾".univals;  # OUTPUT: «(4 NaN 0.75)␤» 

(Str) routine chars

multi sub    chars(Cool  $x --> Int:D)
multi sub    chars(Str:D $x --> Int:D)
multi sub    chars(str   $x --> int)
multi method chars(Str:D:   --> Int:D)

Returns the number of characters in the string in graphemes. On the JVM, this currently erroneously returns the number of codepoints instead.

(Str) method encode

multi method encode(Str:D $encoding = 'utf8':$replacementBool() :$translate-nl = False:$strict)

Returns a Blob which represents the original string in the given encoding and normal form. The actual return type is as specific as possible, so $str.encode('UTF-8') returns a utf8 object, $str.encode('ISO-8859-1') a buf8. If :translate-nl is set to True, it will translate newlines from \n to \n\r, but only in Windows. $replacement indicates how characters are going to be replaced in the case they are not available in the current encoding, while $strict indicates whether unmapped codepoints will still decode; for instance, codepoint 129 which does not exist in windows-1252.

my $str = "Þor is mighty";
say $str.encode("ascii":replacement'Th') ).decode("ascii");
# OUTPUT: «Thor is mighty␤» 

In this case, any unknown character is going to be substituted by Th. We know in advance that the character that is not known in the ascii encoding is Þ, so we substitute it by its latin equivalent, Th. In the absence of any replacement set of characters, :replacement is understood as a Bool:

say $str.encode("ascii":replacement).decode("ascii"); # OUTPUT: «?or is mighty␤» 

If :replacement is not set or assigned a value, the error Error encoding ASCII string: could not encode codepoint 222 will be issued.

(Str) routine index

multi sub    index(Cool $sStr:D $needleCool $startpos = 0 --> Int)
multi method index(Cool $needleCool $startpos = 0 --> Int)

Searches for $needle in the string starting from $startpos. It returns the offset into the string where $needle was found, and Nil if it was not found.

Examples:

say index "Camelia is a butterfly""a";     # OUTPUT: «1␤» 
say index "Camelia is a butterfly""a"2;  # OUTPUT: «6␤» 
say index "Camelia is a butterfly""er";    # OUTPUT: «17␤» 
say index "Camelia is a butterfly""Camel"# OUTPUT: «0␤» 
say index "Camelia is a butterfly""Onion"# OUTPUT: «Nil␤» 
 
say index("Camelia is a butterfly""Onion").defined ?? 'OK' !! 'NOT'# OUTPUT: «NOT␤» 

(Str) routine rindex

multi sub    rindex(Str:D $haystackStr:D $needleInt $startpos = $haystack.chars --> Int)
multi method rindex(Str:D $haystack: Str:D $needleInt $startpos = $haystack.chars --> Int)

Returns the last position of $needle in $haystack not after $startpos. Returns Nil if $needle wasn't found.

Examples:

say rindex "Camelia is a butterfly""a";     # OUTPUT: «11␤» 
say rindex "Camelia is a butterfly""a"10# OUTPUT: «6␤» 

(Str) method indices

Defined as:

multi method indices(Str:D: Str:D $needle:$overlap --> List:D)
multi method indices(Str:D: Str:D $needleInt:D $start:$overlap --> List:D)

Searches for all occurrences of $needle in the string starting from position $start, or zero if it is not specified, and returns a List with all offsets in the string where $needle was found, or an empty list if it was not found.

If the optional parameter :overlap is specified the search continues from the index directly following the previous match, otherwise the search will continue after the previous match.

say "banana".indices("a");              # OUTPUT: «(1 3 5)␤» 
say "banana".indices("ana");            # OUTPUT: «(1)␤» 
say "banana".indices("ana":overlap);  # OUTPUT: «(1 3)␤» 
say "banana".indices("ana"2);         # OUTPUT: «(3)␤» 

(Str) method match

method match($pat:continue(:$c), :pos(:$p), :global(:$g), :overlap(:$ov), :exhaustive(:$ex), :st(:$nd), :rd(:$th), :$nth:$x --> Match)

Performs a match of the string against $pat and returns a Match object if there is a successful match; it returns (Any) otherwise. Matches are stored in the default match variable $/. If $pat is not a Regex object, match will coerce the argument to a Str and then perform a literal match against $pat.

A number of optional named parameters can be specified, which alter how the match is performed.

  • :continue

  • The :continue adverb takes as an argument the position where the regex should start to search. If no position is specified for :c it will default to 0 unless $/ is set, in which case it defaults to $/.to.

  • :pos

  • Takes a position as an argument. Fails if regex cannot be matched from that position, unlike :continue.

  • :global

  • Instead of searching for just one match and returning a Match object, search for every non-overlapping match and return them in a List.

  • :overlap

  • Finds all matches including overlapping matches, but only returns one match from each starting position.

  • :exhaustive

  • Finds all possible matches of a regex, including overlapping matches and matches that start at the same position.

  • :st, :nd, :rd, :nth

  • Returns the nth match in the string. The argument can be a Numeric or an Iterable producing monotonically increasing numbers (that is, the next produced number must be larger than the previous one). The Iterable will be lazily reified and if non-monotonic sequence is encountered an exception will be thrown.

    If Iterable argument is provided the return value and $/ variable will be set to a possibly-empty List of Match objects.

  • :x

  • Takes as an argument the number of matches to return, stopping once the specified number of matches has been reached. The value must be a Numeric or a Range; other values will cause .match to return a Failure containing X::Str::Match::x exception.

    Examples:

    say "properly".match('perl');                     # OUTPUT: «「perl」␤» 
    say "properly".match(/p.../);                     # OUTPUT: «「prop」␤» 
    say "1 2 3".match([1,2,3]);                       # OUTPUT: «「1 2 3」␤» 
    say "a1xa2".match(/a./:continue(2));            # OUTPUT: «「a2」␤» 
    say "abracadabra".match(/ a .* a /:exhaustive);
    # OUTPUT: «(「abracadabra」 「abracada」 「abraca」 「abra」 「acadabra」 「acada」 「aca」 「adabra」 「ada」 「abra」)␤» 
    say 'several words here'.match(/\w+/,:global);    # OUTPUT: «(「several」 「words」 「here」)␤» 
    say 'abcdef'.match(/.*/:pos(2));                # OUTPUT: «「cdef」␤» 
    say "foo[bar][baz]".match(/../:1st);            # OUTPUT: «「fo」␤» 
    say "foo[bar][baz]".match(/../:2nd);            # OUTPUT: «「o[」␤» 
    say "foo[bar][baz]".match(/../:3rd);            # OUTPUT: «「ba」␤» 
    say "foo[bar][baz]".match(/../:4th);            # OUTPUT: «「r]」␤» 
    say "foo[bar][baz]bada".match('ba':x(2));       # OUTPUT: «(「ba」 「ba」)␤» 

    (Str) method Numeric

    Defined as:

    method Numeric(Str:D: --> Numeric:D)

    Coerces the string to Numeric using semantics equivalent to val routine. Fails with X::Str::Numeric if the coercion to a number cannot be done.

    Only Unicode characters with property Nd, as well as leading and trailing whitespace are allowed, with the special case of the empty string being coerced to 0. Synthetic codepoints (e.g. "7\x[308]") are forbidden.

    While Nl and No characters can be used as numeric literals in the language, their conversion via Str.Numeric will fail, by design. See unival if you need to coerce such characters to Numeric.

    (Str) method Int

    Defined as:

    method Int(Str:D: --> Int:D)

    Coerces the string to Int, using the same rules as Str.Numeric.

    (Str) method Rat

    Defined as:

    method Rat(Str:D: --> Rational:D)

    Coerces the string to a Rat object, using the same rules as Str.Numeric. If the denominator is larger than 64-bits is it still kept and no degradation to Num occurs.

    (Str) method Bool

    Defined as:

    method Bool(Str:D: --> Bool:D)

    Returns False if the string is empty, True otherwise.

    (Str) routine parse-base

    multi sub    parse-base(Str:D $numInt:D $radix --> Numeric)
    multi method parse-base(Str:D $num: Int:D $radix --> Numeric)

    Performs the reverse of base by converting a string with a base-$radix number to its Numeric equivalent. Will fail if radix is not in range 2..36 or if the string being parsed contains characters that are not valid for the specified base.

    1337.base(32).parse-base(32).say# OUTPUT: «1337␤» 
    'Perl6'.parse-base(30).say;       # OUTPUT: «20652936␤» 
    'FF.DD'.parse-base(16).say;       # OUTPUT: «255.863281␤» 

    See also: :16<FF> syntax for number literals

    (Str) routine parse-names

    sub    parse-names(Str:D $names  --> Str:D)
    method parse-names(Str:D $names: --> Str:D)

    DEPRECATED. Use uniparse instead. Existed in Rakudo implementation as a proof of viability implementation before being renamed and will be removed when 6.e language is released.

    (Str) routine uniparse

    sub    uniparse(Str:D $names  --> Str:D)
    method uniparse(Str:D $names: --> Str:D)

    Takes string with comma-separated Unicode names of characters and returns a string composed of those characters. Will fail if any of the characters' names are empty or not recognized. Whitespace around character names is ignored.

    say "{uniparse 'TWO HEARTS'} Perl"# OUTPUT: «I 💕 Perl␤» 
    'TWO HEARTS, BUTTERFLY'.uniparse.say# OUTPUT: «💕🦋␤» 

    Note that unlike \c[...] construct available in string interpolation, uniparse does not accept decimal numerical values. Use chr routine to convert those:

    say "\c[1337]"# OUTPUT: «Թ␤» 
    say '1337'.chr# OUTPUT: «Թ␤» 

    Note: before being standardized in 2017.12, this routine was known under its working name of parse-names. This denomination will be removed in the 6.e version.

    (Str) routine split

    multi sub    split(  Str:D $delimiterStr:D $input$limit = Inf,
      :$skip-empty:$v:$k:$kv:$p)
    multi sub    split(Regex:D $delimiterStr:D $input$limit = Inf,
      :$skip-empty:$v:$k:$kv:$p)
    multi sub    split(List:D $delimitersStr:D $input$limit = Inf,
      :$skip-empty:$v:$k:$kv:$p)
    multi method split(Str:D:   Str:D $delimiter$limit = Inf,
      :$skip-empty:$v:$k:$kv:$p)
    multi method split(Str:D: Regex:D $delimiter$limit = Inf,
      :$skip-empty:$v:$k:$kv:$p)
    multi method split(Str:D: List:D $delimiters$limit = Inf,
      :$skip-empty:$v:$k:$kv:$p)

    Splits a string up into pieces based on delimiters found in the string.

    If DELIMITER is a string, it is searched for literally and not treated as a regex. If DELIMITER is the empty string, it effectively returns all characters of the string separately (plus an empty string at the begin and at the end). If PATTERN is a regular expression, then that will be used to split up the string. If DELIMITERS is a list, then all of its elements will be considered a delimiter (either a string or a regular expression) to split the string on.

    The optional LIMIT indicates in how many segments the string should be split, if possible. It defaults to Inf (or *, whichever way you look at it), which means "as many as possible". Note that specifying negative limits will not produce any meaningful results.

    A number of optional named parameters can be specified, which alter the result being returned. The :v, :k, :kv and :p named parameters all perform a special action with regards to the delimiter found.

  • :skip-empty

  • If specified, do not return empty strings before or after a delimiter.

  • :v

  • Also return the delimiter. If the delimiter was a regular expression, then this will be the associated Match object. Since this stringifies as the delimiter string found, you can always assume it is the delimiter string if you're not interested in further information about that particular match.

  • :k

  • Also return the index of the delimiter. Only makes sense if a list of delimiters was specified: in all other cases, this will be 0.

  • :kv

  • Also return both the index of the delimiter, as well as the delimiter.

  • :p

  • Also return the index of the delimiter and the delimiter as a Pair.

    Examples:

    say split(";""a;b;c").perl;           # OUTPUT: «("a", "b", "c").Seq␤» 
    say split(";""a;b;c":v).perl;       # OUTPUT: «("a", ";", "b", ";", "c").Seq␤» 
    say split(";""a;b;c"2).perl;        # OUTPUT: «("a", "b;c").Seq␤» 
    say split(";""a;b;c"2:v).perl;    # OUTPUT: «("a", ";", "b;c").Seq␤» 
    say split(";""a;b;c,d").perl;         # OUTPUT: «("a", "b", "c,d").Seq␤» 
    say split(/\;/"a;b;c,d").perl;        # OUTPUT: «("a", "b", "c,d").Seq␤» 
    say split(<; ,>"a;b;c,d").perl;       # OUTPUT: «("a", "b", "c", "d").Seq␤» 
    say split(/<[;,]>/"a;b;c,d").perl;    # OUTPUT: «("a", "b", "c", "d").Seq␤» 
    say split(<; ,>"a;b;c,d":k).perl;   # OUTPUT: «("a", 0, "b", 0, "c", 1, "d").Seq␤» 
    say split(<; ,>"a;b;c,d":kv).perl;  # OUTPUT: «("a", 0, ";", "b", 0, ";", "c", 1, ",", "d").Seq␤» 
     
    say "".split("x").perl;                 # OUTPUT: «("",).Seq␤» 
    say "".split("x":skip-empty).perl;    # OUTPUT: «().Seq␤» 
     
    say "abcde".split("").perl;             # OUTPUT: «("", "a", "b", "c", "d", "e", "").Seq␤» 
    say "abcde".split("",:skip-empty).perl# OUTPUT: «("a", "b", "c", "d", "e").Seq␤» 

    (Str) routine comb

    multi sub    comb(Str:D   $matcherStr:D $input$limit = Inf)
    multi sub    comb(Regex:D $matcherStr:D $input$limit = InfBool :$match)
    multi sub    comb(Int:D $sizeStr:D $input$limit = Inf)
    multi method comb(Str:D $input:)
    multi method comb(Str:D $input: Str:D   $matcher$limit = Inf)
    multi method comb(Str:D $input: Regex:D $matcher$limit = InfBool :$match)
    multi method comb(Str:D $input: Int:D $size$limit = Inf)

    Searches for $matcher in $input and returns a list of non-overlapping matches limited to at most $limit matches. If $matcher is a Regex, each Match object is converted to a Str, unless $match is set.

    If no matcher is supplied, a list of characters in the string is returned, as if the matcher was rx/./.

    Examples:

    say "abc".comb.perl;                 # OUTPUT: «("a", "b", "c").Seq␤» 
    say 'abcdefghijk'.comb(3).perl;      # OUTPUT: «("abc", "def", "ghi", "jk").Seq␤» 
    say 'abcdefghijk'.comb(32).perl;   # OUTPUT: «("abc", "def").Seq␤» 
    say comb(/\w/"a;b;c").perl;        # OUTPUT: «("a", "b", "c").Seq␤» 
    say comb(/\N/"a;b;c").perl;        # OUTPUT: «("a", ";", "b", ";", "c").Seq␤» 
    say comb(/\w/"a;b;c"2).perl;     # OUTPUT: «("a", "b").Seq␤» 
    say comb(/\w\;\w/"a;b;c"2).perl# OUTPUT: «("a;b",).Seq␤» 
    say comb(/.<(.)>/"<>[]()").perl;   # OUTPUT: «(">", "]", ")").Seq␤» 

    If the matcher is an integer value, comb behaves as if the matcher was rx/ . ** {1..$matcher} /, but which is optimized to be much faster.

    Note that a Regex matcher may control which portion of the matched text is returned by using features which explicitly set the top-level capture.

    (Str) routine lines

    Defined as:

    multi method lines(Str:D: $limit)
    multi method lines(Str:D:)

    Returns a list of lines (without trailing newline characters), i.e. the same as a call to $input.comb( / ^^ \N* /, $limit ) would.

    Examples:

    say lines("a\nb").perl;    # OUTPUT: «("a", "b").Seq␤» 
    say lines("a\nb").elems;   # OUTPUT: «2␤» 
    say "a\nb".lines.elems;    # OUTPUT: «2␤» 
    say "a\n".lines.elems;     # OUTPUT: «1␤» 

    You can limit the number of lines returned by setting the $limit variable to a non-zero, non-Infinity value:

    say <not there yet>.join("\n").lines2 ); # OUTPUT: «(not there)␤» 

    DEPRECATED as of 6.d language, the :count argument can be used to return the total number of lines:

    say <not there yet>.join("\n").lines:count ); # OUTPUT: «3␤» 

    Use elems call on the returned Seq instead:

    say <not there yet>.join("\n").lines.elems# OUTPUT: «3␤» 

    (Str) routine words

    multi method words(Str:D: $limit)
    multi method words(Str:D:)

    Returns a list of non-whitespace bits, i.e. the same as a call to $input.comb( / \S+ /, $limit ) would.

    Examples:

    say "a\nb\n".words.perl;       # OUTPUT: «("a", "b").Seq␤» 
    say "hello world".words.perl;  # OUTPUT: «("hello", "world").Seq␤» 
    say "foo:bar".words.perl;      # OUTPUT: «("foo:bar",).Seq␤» 
    say "foo:bar\tbaz".words.perl# OUTPUT: «("foo:bar", "baz").Seq␤» 

    It can also be used as a subroutine, turning the first argument into the invocant. $limit is optional, but if it is provided (and not equal to Inf), it will return only the first $limit words.

    say words("I will be very brief here"2); # OUTPUT: «(I will)␤» 

    (Str) routine flip

    multi sub    flip(Str:D  --> Str:D)
    multi method flip(Str:D: --> Str:D)

    Returns the string reversed character by character.

    Examples:

    "Perl".flip;  # RESULT: «lreP» 
    "ABBA".flip;  # RESULT: «ABBA» 

    (Str) routine sprintf

    Defined as

    multi sub sprintfStr:D $format*@args --> Str:D)

    This function is mostly identical to the C library sprintf and printf functions. The only difference between the two functions is that sprintf returns a string while the printf function writes to a filehandle. sprintf returns a Str, not a literal.

    The $format is scanned for % characters. Any % introduces a format token. Format tokens have the following grammar:

    grammar Str::SprintfFormat {
     regex format_token { '%'<index>? <precision>? <modifier>? <directive> }
     token index { \d+ '$' }
     token precision { <flags>? <vector>? <precision_count> }
     token flags { <[ \x20 + 0 \# \- ]>+ }
     token precision_count { [ <[1..9]>\d* | '*' ]? [ '.' [ \d* | '*' ] ]? }
     token vector { '*'? v }
     token modifier { < ll l h V q L > }
     token directive { < % c s d u o x e f g X E G b p n i D U O F > }
    }

    Directives guide the use (if any) of the arguments. When a directive (other than %) is used, it indicates how the next argument passed is to be formatted into the string to be created.

    [1]

    The directives are:

    % a literal percent sign
    c a character with the given codepoint
    s a string
    d a signed integer, in decimal
    u an unsigned integer, in decimal
    o an unsigned integer, in octal
    x an unsigned integer, in hexadecimal
    e a floating-point number, in scientific notation
    f a floating-point number, in fixed decimal notation
    g a floating-point number, in %e or %f notation
    X like x, but using uppercase letters
    E like e, but using an uppercase "E"
    G like g, but with an uppercase "E" (if applicable)
    b an unsigned integer, in binary

    Compatibility:

    i a synonym for %d
    D a synonym for %ld
    U a synonym for %lu
    O a synonym for %lo
    F a synonym for %f

    Modifiers change the meaning of format directives, but are largely no-ops (the semantics are still being determined).

    h interpret integer as native "short" (typically int16)
    NYI l interpret integer as native "long" (typically int32 or int64)
    NYI ll interpret integer as native "long long" (typically int64)
    NYI L interpret integer as native "long long" (typically uint64)
    NYI q interpret integer as native "quads" (typically int64 or larger)

    Between the % and the format letter, you may specify several additional attributes controlling the interpretation of the format. In order, these are:

    Format parameter index

    An explicit format parameter index, such as 2$. By default, sprintf will format the next unused argument in the list, but this allows you to take the arguments out of order:

    sprintf '%2$d %1$d'1234;      # OUTPUT: «34 12␤» 
    sprintf '%3$d %d %1$d'123;  # OUTPUT: «3 1 1␤» 

    Flags

    One or more of:

    space prefix non-negative number with a space
    + prefix non-negative number with a plus sign
    - left-justify within the field
    0 use leading zeros, not spaces, for required padding
    # ensure the leading "0" for any octal, prefix non-zero hexadecimal with "0x" or "0X", prefix non-zero binary with "0b" or "0B"

    For example:

    sprintf '<% d>',  12;   # RESULT: «< 12>␤» 
    sprintf '<% d>',   0;   # RESULT: «< 0>"» 
    sprintf '<% d>'-12;   # RESULT: «<-12>␤» 
    sprintf '<%+d>',  12;   # RESULT: «<+12>␤» 
    sprintf '<%+d>',   0;   # RESULT: «<+0>"» 
    sprintf '<%+d>'-12;   # RESULT: «<-12>␤» 
    sprintf '<%6s>',  12;   # RESULT: «<    12>␤» 
    sprintf '<%-6s>'12;   # RESULT: «<12    >␤» 
    sprintf '<%06s>'12;   # RESULT: «<000012>␤» 
    sprintf '<%#o>',  12;   # RESULT: «<014>␤» 
    sprintf '<%#x>',  12;   # RESULT: «<0xc>␤» 
    sprintf '<%#X>',  12;   # RESULT: «<0XC>␤» 
    sprintf '<%#b>',  12;   # RESULT: «<0b1100>␤» 
    sprintf '<%#B>',  12;   # RESULT: «<0B1100>␤» 

    When a space and a plus sign are given as the flags at once, the space is ignored:

    sprintf '<%+ d>'12;   # RESULT: «<+12>␤» 
    sprintf '<% +d>'12;   # RESULT: «<+12>␤» 

    When the # flag and a precision are given in the %o conversion, the necessary number of 0s is added at the beginning. If the value of the number is 0 and the precision is 0, it will output nothing; precision 0 or smaller than the actual number of elements will return the number with 0 to the left:

    say sprintf '<%#.5o>'0o12;     # OUTPUT: «<00012>␤» 
    say sprintf '<%#.5o>'0o12345;  # OUTPUT: «<012345>␤» 
    say sprintf '<%#.0o>'0;        # OUTPUT: «<>␤» zero precision and value 0 results in no output! 
    say sprintf '<%#.0o>'0o1       # OUTPUT: «<01>␤» 

    Vector flag

    This flag tells Perl 6 to interpret the supplied string as a vector of integers, one for each character in the string. Perl 6 applies the format to each integer in turn, then joins the resulting strings with a separator (a dot, '.', by default). This can be useful for displaying ordinal values of characters in arbitrary strings:

      NYI sprintf "%vd""AB\x{100}";           # "65.66.256" 

    You can also explicitly specify the argument number to use for the join string using something like *2$v; for example:

      NYI sprintf '%*4$vX %*4$vX %*4$vX',       # 3 IPv6 addresses 
              @addr[1..3], ":";

    (Minimum) Width

    Arguments are usually formatted to be only as wide as required to display the given value. You can override the width by putting a number here, or get the width from the next argument (with * ) or from a specified argument (e.g., with *2$):

    sprintf "<%s>""a";           # RESULT: «<a>␤» 
    sprintf "<%6s>""a";          # RESULT: «<     a>␤» 
    sprintf "<%*s>"6"a";       # RESULT: «<     a>␤» 
     NYI sprintf '<%*2$s>'"a"6# "<     a>" 
    sprintf "<%2s>""long";       # RESULT: «<long>␤» (does not truncate) 

    If a field width obtained through * is negative, it has the same effect as the - flag: left-justification.

    Precision, or maximum width

    You can specify a precision (for numeric conversions) or a maximum width (for string conversions) by specifying a . followed by a number. For floating-point formats, except g and G, this specifies how many places right of the decimal point to show (the default being 6). For example:

    # these examples are subject to system-specific variation 
    sprintf '<%f>'1;    # RESULT: «"<1.000000>"␤» 
    sprintf '<%.1f>'1;  # RESULT: «"<1.0>"␤» 
    sprintf '<%.0f>'1;  # RESULT: «"<1>"␤» 
    sprintf '<%e>'10;   # RESULT: «"<1.000000e+01>"␤» 
    sprintf '<%.1e>'10# RESULT: «"<1.0e+01>"␤» 

    For "g" and "G", this specifies the maximum number of digits to show, including those prior to the decimal point and those after it; for example:

    # These examples are subject to system-specific variation. 
    sprintf '<%g>'1;        # RESULT: «<1>␤» 
    sprintf '<%.10g>'1;     # RESULT: «<1>␤» 
    sprintf '<%g>'100;      # RESULT: «<100>␤» 
    sprintf '<%.1g>'100;    # RESULT: «<1e+02>␤» 
    sprintf '<%.2g>'100.01# RESULT: «<1e+02>␤» 
    sprintf '<%.5g>'100.01# RESULT: «<100.01>␤» 
    sprintf '<%.4g>'100.01# RESULT: «<100>␤» 

    For integer conversions, specifying a precision implies that the output of the number itself should be zero-padded to this width, where the 0 flag is ignored:

    (Note that this feature currently works for unsigned integer conversions, but not for signed integer.)

    sprintf '<%.6d>'1;      # <000001> 
    NYI sprintf '<%+.6d>'1;     # <+000001> 
    NYI sprintf '<%-10.6d>'1;   # <000001    > 
    sprintf '<%10.6d>'1;    # <    000001> 
    NYI sprintf '<%010.6d>'1;   #     000001> 
    NYI sprintf '<%+10.6d>'1;   # <   +000001> 
    sprintf '<%.6x>'1;         # RESULT: «<000001>␤» 
    sprintf '<%#.6x>'1;        # RESULT: «<0x000001>␤» 
    sprintf '<%-10.6x>'1;      # RESULT: «<000001    >␤» 
    sprintf '<%10.6x>'1;       # RESULT: «<    000001>␤» 
    sprintf '<%010.6x>'1;      # RESULT: «<    000001>␤» 
    sprintf '<%#10.6x>'1;      # RESULT: «<  0x000001>␤» 

    For string conversions, specifying a precision truncates the string to fit the specified width:

    sprintf '<%.5s>'"truncated";   # RESULT: «<trunc>␤» 
    sprintf '<%10.5s>'"truncated"# RESULT: «<     trunc>␤» 

    You can also get the precision from the next argument using .*, or from a specified argument (e.g., with .*2$):

    sprintf '<%.6x>'1;       # RESULT: «<000001>␤» 
    sprintf '<%.*x>'61;    # RESULT: «<000001>␤» 
    NYI sprintf '<%.*2$x>'16;  # "<000001>" 
    NYI sprintf '<%6.*2$x>'14# "<  0001>" 

    If a precision obtained through * is negative, it counts as having no precision at all:

    sprintf '<%.*s>',  7"string";   # RESULT: «<string>␤» 
    sprintf '<%.*s>',  3"string";   # RESULT: «<str>␤» 
    sprintf '<%.*s>',  0"string";   # RESULT: «<>␤» 
    sprintf '<%.*s>'-1"string";   # RESULT: «<string>␤» 
    sprintf '<%.*d>',  10;          # RESULT: «<0>␤» 
    sprintf '<%.*d>',  00;          # RESULT: «<>␤» 
    sprintf '<%.*d>'-10;          # RESULT: «<0>␤» 

    Size

    For numeric conversions, you can specify the size to interpret the number as using l, h, V, q, L, or ll. For integer conversions (d u o x X b i D U O), numbers are usually assumed to be whatever the default integer size is on your platform (usually 32 or 64 bits), but you can override this to use instead one of the standard C types, as supported by the compiler used to build Perl 6:

    (Note: None of the following have been implemented.)

    hh interpret integer as C type "char" or "unsigned char"
    h interpret integer as C type "short" or "unsigned short"
    j interpret integer as C type "intmax_t", only with a C99 compiler (unportable)
    l interpret integer as C type "long" or "unsigned long"
    q, L, or ll interpret integer as C type "long long", "unsigned long long", or "quad" (typically 64-bit integers)
    t interpret integer as C type "ptrdiff_t"
    z interpret integer as C type "size_t"

    Order of arguments

    Normally, sprintf takes the next unused argument as the value to format for each format specification. If the format specification uses * to require additional arguments, these are consumed from the argument list in the order they appear in the format specification before the value to format. Where an argument is specified by an explicit index, this does not affect the normal order for the arguments, even when the explicitly specified index would have been the next argument.

    So:

    my $a = 5my $b = 2my $c = 'net';
    sprintf "<%*.*s>"$a$b$c# RESULT: «<   ne>␤» 

    uses $a for the width, $b for the precision, and $c as the value to format; while:

    NYI sprintf '<%*1$.*s>'$a$b;

    would use $a for the width and precision and $b as the value to format.

    Here are some more examples; be aware that when using an explicit index, the $ may need escaping:

    sprintf "%2\$d %d\n",      1234;     # RESULT: «34 12␤␤» 
    sprintf "%2\$d %d %d\n",   1234;     # RESULT: «34 12 34␤␤» 
    sprintf "%3\$d %d %d\n",   123456# RESULT: «56 12 34␤␤» 
    NYI sprintf "%2\$*3\$d %d\n",  1234,  3# " 34 12\n" 
    NYI sprintf "%*1\$.*f\n",       4,  510# "5.0000\n" 

    Other examples:

     NYI sprintf "%ld a big number"4294967295;
     NYI sprintf "%%lld a bigger number"4294967296;
     sprintf('%c'97);                  # RESULT: «a␤» 
     sprintf("%.2f"1.969);             # RESULT: «1.97␤» 
     sprintf("%+.3f"3.141592);         # RESULT: «+3.142␤» 
     sprintf('%2$d %1$d'1234);       # RESULT: «34 12␤» 
     sprintf("%x"255);                 # RESULT: «ff␤» 

    Special case: sprintf("<b>%s</b>\n", "Perl 6") will not work, but one of the following will:

    sprintf Q:b "<b>%s</b>\n",  "Perl 6"# RESULT: «<b>Perl 6</b>␤␤» 
    sprintf     "<b>\%s</b>\n""Perl 6"# RESULT: «<b>Perl 6</b>␤␤» 
    sprintf     "<b>%s\</b>\n""Perl 6"# RESULT: «<b>Perl 6</b>␤␤» 

    (Str) method starts-with

    multi method starts-with(Str:D: Str(Cool$needle --> Bool:D)

    Returns True if the invocant is identical to or starts with $needle.

    say "Hello, World".starts-with("Hello");     # OUTPUT: «True␤» 
    say "https://perl6.org/".starts-with('ftp'); # OUTPUT: «False␤» 

    (Str) method ends-with

    multi method ends-with(Str:D: Str(Cool$needle --> Bool:D)

    Returns True if the invocant is identical to or ends with $needle.

    say "Hello, World".ends-with('Hello');      # OUTPUT: «False␤» 
    say "Hello, World".ends-with('ld');         # OUTPUT: «True␤» 

    (Str) method subst

    multi method subst(Str:D: $matcher$replacement*%opts)

    Returns the invocant string where $matcher is replaced by $replacement (or the original string, if no match was found).

    There is an in-place syntactic variant of subst spelled s/matcher/replacement/ and with adverb following the s or inside the matcher.

    $matcher can be a Regex, or a literal Str. Non-Str matcher arguments of type Cool are coerced to Str for literal matching. If a Regex $matcher is used, the $/ special variable will be set to Nil (if no matches occurred), a Match object, or a List of Match objects (if multi-match options like :g are used).

    Literal replacement substitution

    my $some-string = "Some foo";
    my $another-string = $some-string.subst(/foo/"string"); # gives 'Some string' 
    $some-string.=subst(/foo/"string"); # in-place substitution. $some-string is now 'Some string' 

    Callable

    The replacement can be a Callable in which the current Match object will be placed in the $/ variable, as well as the $_ topic variable. Using a Callable as replacement is how you can refer to any of the captures created in the regex:

    # Using capture from $/ variable (the $0 is the first positional capture) 
    say 'abc123defg'.subst(/(\d+)/{ " before $0 after " });
    # OUTPUT: «abc before 123 after defg␤» 
     
    # Using capture from $/ variable (the $<foo> is a named capture) 
    say 'abc123defg'.subst(/$<foo>=\d+/{ " before $<foo> after " });
    # OUTPUT: «abc before 123 after defg␤» 
     
    # Using WhateverCode to operate on the Match given in $_: 
    say 'abc123defg'.subst(/(\d+)/"" ~ *.flip ~ " ]");
    # OUTPUT: «abc[ 321 ]defg␤» 
     
    # Using a Callable to generate substitution without involving current Match: 
    my $i = 41;
    my $str = "The answer is secret.";
    say $str.subst(/secret/{++$i}); # The answer to everything 
    # OUTPUT: «The answer is 42.␤» 

    Adverbs

    The following adverbs are supported

    short long meaning
    :g :global tries to match as often as possible
    :nth(Int|Callable|Whatever) only substitute the nth match; aliases: :st, :nd, :rd, and :th
    :ss :samespace preserves whitespace on substitution
    :ii :samecase preserves case on substitution
    :mm :samemark preserves character marks (e.g. 'ü' replaced with 'o' will result in 'ö')
    :x(Int|Range|Whatever) substitute exactly $x matches

    Note that only in the s/// form :ii implies :i and :ss implies :s. In the method form, the :s and :i modifiers must be added to the regex, not the subst method call.

    More Examples

    Here are other examples of usage:

    my $str = "Hey foo foo foo";
    $str.subst(/foo/"bar":g); # global substitution - returns Hey bar bar bar 
     
    $str.subst(/foo/"no subst":x(0)); # targeted substitution. Number of times to substitute. Returns back unmodified. 
    $str.subst(/foo/"bar":x(1)); #replace just the first occurrence. 
     
    $str.subst(/foo/"bar":nth(3)); # replace nth match alone. Replaces the third foo. Returns Hey foo foo bar 

    The :nth adverb has readable English-looking variants:

    say 'ooooo'.subst: 'o''x':1st; # OUTPUT: «xoooo␤» 
    say 'ooooo'.subst: 'o''x':2nd; # OUTPUT: «oxooo␤» 
    say 'ooooo'.subst: 'o''x':3rd; # OUTPUT: «ooxoo␤» 
    say 'ooooo'.subst: 'o''x':4th; # OUTPUT: «oooxo␤» 

    (Str) method subst-mutate

    NOTE: .subst-mutate will be deprecated in future language versions. You can use subst with .= method call assignment operator or s/// substitution operator instead.

    Where subst returns the modified string and leaves the original unchanged, it is possible to mutate the original string by using subst-mutate. If the match is successful, the method returns a Match object representing the successful match, otherwise returns Nil. If :nth (or one of its aliases) with Iterable value, :g, :global, or :x arguments are used, returns a List of Match objects, or an empty List if no matches occurred.

    my $some-string = "Some foo";
    my $match = $some-string.subst-mutate(/foo/"string");
    say $some-string;  # OUTPUT: «Some string␤» 
    say $match;        # OUTPUT: «「foo」␤» 
    $some-string.subst-mutate(/<[oe]>/'':g); # remove every o and e, notice the :g named argument from .subst 

    If a Regex $matcher is used, the $/ special variable will be set to Nil (if no matches occurred), a Match object, or a List of Match objects (if multi-match options like :g are used).

    (Str) routine substr

    multi sub    substr(Str:D $s$from$chars?  --> Str:D)
    multi sub    substr(Str:D $sRange  $from-to --> Str:D)
    multi method substr(Str:D $s: $from$chars?  --> Str:D)
    multi method substr(Str:D $s: Range $from-to  --> Str:D)

    Returns a substring of the original string, between the indices specified by $from-to's endpoints (coerced to Int) or from index $from and of length $chars.

    Both $from and $chars can be specified as Callable, which will be invoked with the length of the original string and the returned value will be used as the value for the argument. If $from or $chars are not Callable, they'll be coerced to Int.

    If $chars is omitted or is larger than the available characters, the string from $from until the end of the string is returned. If $from-to's starting index or $from is less than zero, X::OutOfRange exception is thrown. The $from-to's ending index is permitted to extend past the end of string, in which case it will be equivalent to the index of the last character.

    say substr("Long string"3..6);     # RESULT: «g st␤» 
    say substr("Long string"63);     # RESULT: «tri␤» 
    say substr("Long string"6);        # RESULT: «tring␤» 
    say substr("Long string"6*-1);   # RESULT: «trin␤» 
    say substr("Long string"*-3*-1); # RESULT: «in␤» 

    (Str) method substr-eq

    multi method substr-eq(Str:D:  Str(Cool$test-stringInt(Cool$from --> Bool)
    multi method substr-eq(Cool:D: Str(Cool$test-stringInt(Cool$from --> Bool)

    Returns True if the $test-string exactly matches the String object, starting from the given initial index $from. For example, beginning with the string "foobar", the substring "bar" will match from index 3:

    my $string = "foobar";
    say $string.substr-eq("bar"3);    # OUTPUT: «True␤» 

    However, the substring "barz" starting from index 3 won't match even though the first three letters of the substring do match:

    my $string = "foobar";
    say $string.substr-eq("barz"3);   # OUTPUT: «False␤» 

    Naturally, to match the entire string, one merely matches from index 0:

    my $string = "foobar";
    say $string.substr-eq("foobar"0); # OUTPUT: «True␤» 

    Since this method is inherited from the Cool type, it also works on integers. Thus the integer 42 will match the value 342 starting from index 1:

    my $integer = 342;
    say $integer.substr-eq(421);      # OUTPUT: «True␤» 

    As expected, one can match the entire value by starting at index 0:

    my $integer = 342;
    say $integer.substr-eq(3420);     # OUTPUT: «True␤» 

    Also using a different value or an incorrect starting index won't match:

    my $integer = 342;
    say $integer.substr-eq(423);      # OUTPUT: «False␤» 
    say $integer.substr-eq(73420);    # OUTPUT: «False␤» 

    (Str) method substr-rw

    method substr-rw($from$length = *)

    A version of substr that returns a Proxy functioning as a writable reference to a part of a string variable. Its first argument, $from specifies the index in the string from which a substitution should occur, and its last argument, $length specifies how many characters are to be replaced. If not specified, $length defaults to the length of the string.

    For example, in its method form, if one wants to take the string "abc" and replace the second character (at index 1) with the letter "z", then one does this:

    my $string = "abc";
    $string.substr-rw(11= "z";
    $string.say;                         # OUTPUT: «azc␤» 

    Note that new characters can be inserted as well:

    my $string = 'azc';
    $string.substr-rw(20= "-Zorro-"# insert new characters BEFORE the character at index 2 
    $string.say;                         # OUTPUT: «az-Zorro-c␤» 

    substr-rw also has a function form, so the above examples can also be written like so:

    my $string = "abc";
    substr-rw($string11= "z";
    $string.say;                          # OUTPUT: «azc␤» 
    substr-rw($string20= "-Zorro-";
    $string.say;                          # OUTPUT: «az-Zorro-c␤» 

    It is also possible to alias the writable reference returned by substr-rw for repeated operations:

    my $string = "A character in the 'Flintstones' is: barney";
    $string ~~ /(barney)/;
    my $ref := substr-rw($string$0.from$0.to-$0.from);
    $string.say;
    # OUTPUT: «A character in the 'Flintstones' is: barney␤» 
    $ref = "fred";
    $string.say;
    # OUTPUT: «A character in the 'Flintstones' is: fred␤» 
    $ref = "wilma";
    $string.say;
    # OUTPUT: «A character in the 'Flintstones' is: wilma␤» 

    (Str) routine samemark

    multi sub samemark(Str:D $stringStr:D $pattern --> Str:D)
    method    samemark(Str:D: Str:D $pattern --> Str:D)

    Returns a copy of $string with the mark/accent information for each character changed such that it matches the mark/accent of the corresponding character in $pattern. If $string is longer than $pattern, the remaining characters in $string receive the same mark/accent as the last character in $pattern. If $pattern is empty no changes will be made.

    Examples:

    say 'åäö'.samemark('aäo');                        # OUTPUT: «aäo␤» 
    say 'åäö'.samemark('a');                          # OUTPUT: «aao␤» 
     
    say samemark('Pêrl''a');                        # OUTPUT: «Perl␤» 
    say samemark('aöä''');                          # OUTPUT: «aöä␤» 

    (Str) method succ

    method succ(Str:D --> Str:D)

    Returns the string incremented by one.

    String increment is "magical". It searches for the last alphanumeric sequence that is not preceded by a dot, and increments it.

    '12.34'.succ;      # RESULT: «13.34» 
    'img001.png'.succ# RESULT: «img002.png» 

    The actual increment step works by mapping the last alphanumeric character to a character range it belongs to, and choosing the next character in that range, carrying to the previous letter on overflow.

    'aa'.succ;   # RESULT: «ab» 
    'az'.succ;   # RESULT: «ba» 
    '109'.succ;  # RESULT: «110» 
    'α'.succ;    # RESULT: «β» 
    'a9'.succ;   # RESULT: «b0» 

    String increment is Unicode-aware, and generally works for scripts where a character can be uniquely classified as belonging to one range of characters.

    (Str) method pred

    method pred(Str:D: --> Str:D)

    Returns the string decremented by one.

    String decrementing is "magical" just like string increment (see succ). It fails on underflow

    'b0'.pred;           # RESULT: «a9» 
    'a0'.pred;           # Failure 
    'img002.png'.pred;   # RESULT: «img001.png» 

    (Str) routine ord

    multi sub    ord(Str:D  --> Int:D)
    multi method ord(Str:D: --> Int:D)

    Returns the codepoint number of the base characters of the first grapheme in the string.

    Example:

    ord("A"); # 65 
    "«".ord;  # 171 

    (Str) method ords

    multi method ords(Str:D: --> Seq)

    Returns a list of Unicode codepoint numbers that describe the codepoints making up the string.

    Example:

    "aå«".ords# (97 229 171) 

    Strings are represented as graphemes. If a character in the string is represented by multiple codepoints, then all of those codepoints will appear in the result of ords. Therefore, the number of elements in the result may not always be equal to chars, but will be equal to codes; codes computes the codepoints in a different way, so the result might be faster.

    The codepoints returned will represent the string in NFC. See the NFD, NFKC, and NFKD methods if other forms are required.

    (Str) method trans

    multi method trans(Str:D: Pair:D \what*%n --> Str)
    multi method trans(Str:D: *@changes:complement(:$c), :squash(:$s), :delete(:$d--> Str)

    Replaces one or many characters with one or many characters. Ranges are supported, both for keys and values. Regexes work as keys. In case a list of keys and values is used, substrings can be replaced as well. When called with :complement anything but the matched value or range is replaced with a single value; with :delete the matched characters without corresponding replacement are removed. Combining :complement and :delete will remove anything but the matched values, unless replacement characters have been specified, in which case, :delete would be ignored. The adverb :squash will reduce repeated matched characters to a single character.

    Example:

    my $str = 'say $x<b> && $y<a>';
    $str.=trans'<' => '«' );
    $str.=trans'<' => '«''>' => '»' );
     
    $str.=trans( [ '<'   , '>'   , '&' ] =>
                 [ '&lt;''&gt;''&amp;' ]);
     
    $str.=trans( ['a'..'y'=> ['A'..'z'] );
     
    "abcdefghij".trans(/<[aeiou]> \w/ => '');                     # RESULT: «cdgh» 
     
    "a123b123c".trans(['a'..'z'=> 'x':complement);            # RESULT: «axxxbxxxc» 
    "a123b123c".trans('23' => '':delete);                       # RESULT: «a1b1c» 
    "aaa1123bb123c".trans('a'..'z' => 'A'..'Z':squash);         # RESULT: «A1123B123C» 
    "aaa1123bb123c".trans('a'..'z' => 'x':complement:squash); # RESULT: «aaaxbbxc» 

    Please note that the behavior of the two versions of the multi method is slightly different. The first form will transpose only one character if the origin is also one character:

    say "abcd".trans"a" => "zz" );  # OUTPUT: «zbcd␤» 
    say "abcd".trans"ba" => "yz" ); # OUTPUT: «zycd␤» 

    In the second case, behavior is as expected, since the origin is more than one char long. However, if the Pair in the multi method does not have a Str as an origin or target, it is handled to the second multi method, and behavior changes:

    say "abcd".trans: ["a"=> ["zz"]; # OUTPUT: «zzbcd␤» 

    In this case, neither origin nor target in the Pair are Str; the method with the Pair signature then calls the second, making this call above equivalent to "abcd".trans: ["a"] => ["zz"], (with the comma behind, making it a Positional, instead of a Pair), resulting in the behavior shown as output.

    (Str) method indent

    multi method indent(Int $steps where { $_ == 0 } )
    multi method indent(Int $steps where { $_ > 0  } )
    multi method indent($steps where { .isa(Whatever|| .isa(Int&& $_ < 0 } )

    Indents each line of the string by $steps. If $steps is negative, it outdents instead. If $steps is *, then the string is outdented to the margin:

    "  indented by 2 spaces\n    indented even more".indent(*)
        eq "indented by 2 spaces\n  indented even more"

    (Str) method trim

    method trim(Str:D: --> Str)

    Remove leading and trailing whitespace. It can be used both as a method on strings and as a function. When used as a method it will return the trimmed string. In order to do in-place trimming, one needs to write .=trim

    my $line = '   hello world    ';
    say '<' ~ $line.trim ~ '>';        # OUTPUT: «<hello world>␤» 
    say '<' ~ trim($line~ '>';       # OUTPUT: «<hello world>␤» 
    $line.trim;
    say '<' ~ $line ~ '>';             # OUTPUT: «<   hello world    >␤» 
    $line.=trim;
    say '<' ~ $line ~ '>';             # OUTPUT: «<hello world>␤» 

    See also trim-trailing and trim-leading

    (Str) method trim-trailing

    method trim-trailing(Str:D: --> Str)

    Removes the whitespace characters from the end of a string. See also trim.

    (Str) method trim-leading

    method trim-leading(Str:D: --> Str)

    Removes the whitespace characters from the beginning of a string. See also trim.

    (Str) method NFC

    method NFC(Str:D: --> NFC:D)

    Returns a codepoint string in NFC format (Unicode Normalization Form C / Composed).

    (Str) method NFD

    method NFD(Str:D: --> NFD:D)

    Returns a codepoint string in NFD format (Unicode Normalization Form D / Decomposed).

    (Str) method NFKC

    method NFKC(Str:D: --> NFKC:D)

    Returns a codepoint string in NFKC format (Unicode Normalization Form KC / Compatibility Composed).

    (Str) method NFKD

    method NFKD(Str:D: --> NFKD:D)

    Returns a codepoint string in NFKD format (Unicode Normalization Form KD / Compatibility Decomposed).

    (Str) method ACCEPTS

    multi method ACCEPTS(Str:D: $other)

    Returns True if the string is the same as $other.

    (Str) method Capture

    Defined as:

    method Capture()

    Throws X::Cannot::Capture.

    (Str) routine val

    multi sub val(Str:D $MAYBEVAL:$val-or-fail)

    Given a Str that may be parsable as a numeric value, it will attempt to construct the appropriate allomorph, returning one of IntStr, NumStr, RatStr or ComplexStr or a plain Str if a numeric value cannot be parsed. If the :val-or-fail adverb is provided it will return an X::Str::Numeric rather than the original string if it cannot parse the string as a number.

    say val("42").^name;    # OUTPUT: «IntStr␤» 
    say val("42e0").^name;  # OUTPUT: «NumStr␤» 
    say val("42.0").^name;  # OUTPUT: «RatStr␤» 
    say val("42+0i").^name# OUTPUT: «ComplexStr␤» 

    While Nl and No characters can be used as numeric literals in the language, they will not be converted to a number by val, by design. See unival if you need to convert such characters to Numeric.

    Routines supplied by class Cool

    NumStr inherits from class Cool, which provides the following routines:

    (Cool) routine abs

    Defined as:

    sub abs(Numeric() $x)
    method abs()

    Coerces the invocant (or in the sub form, the argument) to Numeric and returns the absolute value (that is, a non-negative number).

    say (-2).abs;       # OUTPUT: «2␤» 
    say abs "6+8i";     # OUTPUT: «10␤» 

    (Cool) method conj

    Defined as:

    method conj()

    Coerces the invocant to Numeric and returns the complex conjugate (that is, the number with the sign of the imaginary part negated).

    say (1+2i).conj;        # OUTPUT: «1-2i␤» 

    (Cool) routine sqrt

    Defined as:

    sub sqrt(Numeric(Cool$x)
    method sqrt()

    Coerces the invocant to Numeric (or in the sub form, the argument) and returns the square root, that is, a non-negative number that, when multiplied with itself, produces the original number.

    say 4.sqrt;             # OUTPUT: «2␤» 
    say sqrt(2);            # OUTPUT: «1.4142135623731␤» 

    (Cool) method sign

    Defined as:

    method sign()

    Coerces the invocant to Numeric and returns its sign, that is, 0 if the number is 0, 1 for positive and -1 for negative values.

    say 6.sign;             # OUTPUT: «1␤» 
    say (-6).sign;          # OUTPUT: «-1␤» 
    say "0".sign;           # OUTPUT: «0␤» 

    (Cool) method rand

    Defined as:

    method rand()

    Coerces the invocant to Num and returns a pseudo-random value between zero and the number.

    say 1e5.rand;           # OUTPUT: «33128.495184283␤» 

    (Cool) routine sin

    Defined as:

    sub sin(Numeric(Cool))
    method sin()

    Coerces the invocant (or in the sub form, the argument) to Numeric, interprets it as radians, returns its sine.

    say sin(0);             # OUTPUT: «0␤» 
    say sin(pi/4);          # OUTPUT: «0.707106781186547␤» 
    say sin(pi/2);          # OUTPUT: «1␤» 

    Note that Perl 6 is no computer algebra system, so sin(pi) typically does not produce an exact 0, but rather a very small floating-point number.

    (Cool) routine asin

    Defined as:

    sub asin(Numeric(Cool))
    method asin()

    Coerces the invocant (or in the sub form, the argument) to Numeric, and returns its arc-sine in radians.

    say 0.1.asin;               # OUTPUT: «0.10016742116156␤» 
    say asin(0.1);              # OUTPUT: «0.10016742116156␤» 

    (Cool) routine cos

    Defined as:

    sub cos(Numeric(Cool))
    method cos()

    Coerces the invocant (or in sub form, the argument) to Numeric, interprets it as radians, returns its cosine.

    say 0.cos;                  # OUTPUT: «1␤» 
    say pi.cos;                 # OUTPUT: «-1␤» 
    say cos(pi/2);              # OUTPUT: «6.12323399573677e-17␤» 

    (Cool) routine acos

    Defined as:

    sub acos(Numeric(Cool))
    method acos()

    Coerces the invocant (or in sub form, the argument) to Numeric, and returns its arc-cosine in radians.

    say 1.acos;                 # OUTPUT: «0␤» 
    say acos(-1);               # OUTPUT: «3.14159265358979␤» 

    (Cool) routine tan

    Defined as:

    sub tan(Numeric(Cool))
    method tan()

    Coerces the invocant (or in sub form, the argument) to Numeric, interprets it as radians, returns its tangent.

    say tan(3);                 # OUTPUT: «-0.142546543074278␤» 
    say 3.tan;                  # OUTPUT: «-0.142546543074278␤» 

    (Cool) routine atan

    Defined as:

    sub atan(Numeric(Cool))
    method atan()

    Coerces the invocant (or in sub form, the argument) to Numeric, and returns its arc-tangent in radians.

    say atan(3);                # OUTPUT: «1.24904577239825␤» 
    say 3.atan;                 # OUTPUT: «1.24904577239825␤» 

    (Cool) routine atan2

    Defined as:

    method atan2($y = 1e0)

    Coerces self and argument to Numeric, using them to compute the two-argument arc-tangent in radians.

    say 3.atan2;                # OUTPUT: «1.24904577239825␤» 
    say ⅔.atan2(⅓);             # OUTPUT: «1.1071487177940904␤» 

    The first argument defaults to 1, so in the first case the function will return the angle θ in radians between a vector that goes from origin to the point (3, 1) and the x axis.

    (Cool) routine sec

    Defined as:

    sub sec(Numeric(Cool))
    method sec()

    Coerces the invocant (or in sub form, its argument) to Numeric, interprets it as radians, returns its secant, that is, the reciprocal of its cosine.

    say 45.sec;                 # OUTPUT: «1.90359440740442␤» 
    say sec(45);                # OUTPUT: «1.90359440740442␤» 

    (Cool) routine asec

    Defined as:

    sub asec(Numeric(Cool))
    method asec()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its arc-secant in radians.

    say 1.asec;                 # OUTPUT: «0␤» 
    say sqrt(2).asec;           # OUTPUT: «0.785398163397448␤» 

    (Cool) routine cosec

    Defined as:

    sub cosec(Numeric(Cool))
    method cosec()

    Coerces the invocant (or in sub form, its argument) to Numeric, interprets it as radians, returns its cosecant, that is, the reciprocal of its sine.

    say 0.45.cosec;             # OUTPUT: «2.29903273150897␤» 
    say cosec(0.45);            # OUTPUT: «2.29903273150897␤» 

    (Cool) routine acosec

    Defined as:

    sub acosec(Numeric(Cool))
    method acosec()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its arc-cosecant in radians.

    say 45.acosec;              # OUTPUT: «0.0222240516182672␤» 
    say acosec(45)              # OUTPUT: «0.0222240516182672␤» 

    (Cool) routine cotan

    Defined as:

    sub cotan(Numeric(Cool))
    method cotan()

    Coerces the invocant (or in sub form, its argument) to Numeric, interprets it as radians, returns its cotangent, that is, the reciprocal of its tangent.

    say 45.cotan;               # OUTPUT: «0.617369623783555␤» 
    say cotan(45);              # OUTPUT: «0.617369623783555␤» 

    (Cool) routine acotan

    Defined as:

    sub acotan(Numeric(Cool))
    method acotan()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its arc-cotangent in radians.

    say 45.acotan;              # OUTPUT: «0.0222185653267191␤» 
    say acotan(45)              # OUTPUT: «0.0222185653267191␤» 

    (Cool) routine sinh

    Defined as:

    sub sinh(Numeric(Cool))
    method sinh()

    Coerces the invocant (or in method form, its argument) to Numeric, and returns its Sine hyperbolicus.

    say 1.sinh;                 # OUTPUT: «1.1752011936438␤» 
    say sinh(1);                # OUTPUT: «1.1752011936438␤» 

    (Cool) routine asinh

    Defined as:

    sub asinh(Numeric(Cool))
    method asinh()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse Sine hyperbolicus.

    say 1.asinh;                # OUTPUT: «0.881373587019543␤» 
    say asinh(1);               # OUTPUT: «0.881373587019543␤» 

    (Cool) routine cosh

    Defined as:

    sub cosh(Numeric(Cool))
    method cosh()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Cosine hyperbolicus.

    say cosh(0.5);              # OUTPUT: «1.12762596520638␤» 

    (Cool) routine acosh

    Defined as:

    sub acosh(Numeric(Cool))
    method acosh()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse Cosine hyperbolicus.

    say acosh(45);              # OUTPUT: «4.4996861906715␤» 

    (Cool) routine tanh

    Defined as:

    sub tanh(Numeric(Cool))
    method tanh()

    Coerces the invocant (or in sub form, its argument) to Numeric, interprets it as radians and returns its Tangent hyperbolicus.

    say tanh(0.5);              # OUTPUT: «0.46211715726001␤» 
    say tanh(atanh(0.5));       # OUTPUT: «0.5␤» 

    (Cool) routine atanh

    Defined as:

    sub atanh(Numeric(Cool))
    method atanh()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse tangent hyperbolicus.

    say atanh(0.5);             # OUTPUT: «0.549306144334055␤» 

    (Cool) routine sech

    Defined as:

    sub sech(Numeric(Cool))
    method sech()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Secant hyperbolicus.

    say 0.sech;                 # OUTPUT: «1␤» 

    (Cool) routine asech

    Defined as:

    sub asech(Numeric(Cool))
    method asech()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse hyperbolic secant.

    say 0.8.asech;              # OUTPUT: «0.693147180559945␤» 

    (Cool) routine cosech

    Defined as:

    sub cosech(Numeric(Cool))
    method cosech()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Hyperbolic cosecant.

    say cosech(pi/2);           # OUTPUT: «0.434537208094696␤» 

    (Cool) routine acosech

    Defined as:

    sub acosech(Numeric(Cool))
    method acosech()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse hyperbolic cosecant.

    say acosech(4.5);           # OUTPUT: «0.220432720979802␤» 

    (Cool) routine cotanh

    Defined as:

    sub cotanh(Numeric(Cool))
    method cotanh()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Hyperbolic cotangent.

    say cotanh(pi);             # OUTPUT: «1.00374187319732␤» 

    (Cool) routine acotanh

    Defined as:

    sub acotanh(Numeric(Cool))
    method acotanh()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns its Inverse hyperbolic cotangent.

    say acotanh(2.5);           # OUTPUT: «0.423648930193602␤» 

    (Cool) routine cis

    Defined as:

    sub cis(Numeric(Cool))
    method cis()

    Coerces the invocant (or in sub form, its argument) to Numeric, and returns cos(argument) + i*sin(argument).

    say cis(pi/4);              # OUTPUT: «0.707106781186548+0.707106781186547i␤» 

    (Cool) routine log

    Defined as:

    multi sub log(Numeric(Cool$numberNumeric(Cool$base?)
    multi method log(Cool:D: Cool:D $base?)

    Coerces the arguments (including the invocant in the method form) to Numeric, and returns its Logarithm to base $base, or to base e (Euler's Number) if no base was supplied (Natural logarithm). Returns NaN if $base is negative. Throws an exception if $base is 1.

    say (e*e).log;              # OUTPUT: «2␤» 

    (Cool) routine log10

    Defined as:

    multi sub log10(Cool(Numeric))
    multi method log10()

    Coerces the invocant (or in the sub form, the invocant) to Numeric, and returns its Logarithm to base 10, that is, a number that approximately produces the original number when raised to the power of 10. Returns NaN for negative arguments and -Inf for 0.

    say log10(1001);            # OUTPUT: «3.00043407747932␤» 

    (Cool) routine exp

    Defined as:

    multi sub exp(Cool:D $powCool:D $base?)
    multi method exp(Cool:D: Cool:D $base?)

    Coerces the arguments (including the invocant in the method from) to Numeric, and returns $base raised to the power of the first number. If no $base is supplied, e (Euler's Number) is used.

    say 0.exp;      # OUTPUT: «1␤» 
    say 1.exp;      # OUTPUT: «2.71828182845905␤» 
    say 10.exp;     # OUTPUT: «22026.4657948067␤» 

    (Cool) method unpolar

    Defined as:

    method unpolar(Numeric(Cool))

    Coerces the arguments (including the invocant in the method form) to Numeric, and returns a complex number from the given polar coordinates. The invocant (or the first argument in sub form) is the magnitude while the argument (i.e. the second argument in sub form) is the angle. The angle is assumed to be in radians.

    say sqrt(2).unpolar(pi/4);      # OUTPUT: «1+1i␤» 

    (Cool) routine round

    Defined as:

    multi sub round(Numeric(Cool))
    multi method round(Cool:D: $unit = 1)

    Coerces the invocant (or in sub form, its argument) to Numeric, and rounds it to the unit of $unit. If $unit is 1, rounds to the nearest integer.

    say 1.7.round;          # OUTPUT: «2␤» 
    say 1.07.round(0.1);    # OUTPUT: «1.1␤» 
    say 21.round(10);       # OUTPUT: «20␤» 

    Always rounds up if the number is at mid-point:

    say (−.5 ).round;       # OUTPUT: «0␤» 
    say ( .5 ).round;       # OUTPUT: «1␤» 
    say (−.55).round(.1);   # OUTPUT: «-0.5␤» 
    say ( .55).round(.1);   # OUTPUT: «0.6␤» 

    Pay attention to types when using this method, as ending up with the wrong type may affect the precision you seek to achieve. For Real types, the type of the result is the type of the argument (Complex argument gets coerced to Real, ending up a Num). If rounding a Complex, the result is Complex as well, regardless of the type of the argument.

    9930972392403501.round(1)      .perl.say# OUTPUT: «9930972392403501␤» 
    9930972392403501.round(1e0)    .perl.say# OUTPUT: «9.9309723924035e+15␤» 
    9930972392403501.round(1e0).Int.perl.say# OUTPUT: «9930972392403500␤» 

    (Cool) routine floor

    Defined as:

    multi sub floor(Numeric(Cool))
    multi method floor

    Coerces the invocant (or in sub form, its argument) to Numeric, and rounds it downwards to the nearest integer.

    say "1.99".floor;       # OUTPUT: «1␤» 
    say "-1.9".floor;       # OUTPUT: «-2␤» 
    say 0.floor;            # OUTPUT: «0␤» 

    (Cool) method fmt

    Defined as:

    method fmt($format = '%s')

    Equivalent to calling sprintf with $format as format and the invocant as the second argument. The $format will be coerced to Stringy and defaults to '%s'

    (Cool) routine ceiling

    Defined as:

    multi sub ceiling(Numeric(Cool))
    multi method ceiling

    Coerces the invocant (or in sub form, its argument) to Numeric, and rounds it upwards to the nearest integer.

    say "1".ceiling;        # OUTPUT: «1␤» 
    say "-0.9".ceiling;     # OUTPUT: «0␤» 
    say "42.1".ceiling;     # OUTPUT: «43␤» 

    (Cool) routine truncate

    Defined as:

    multi sub truncate(Numeric(Cool))
    multi method truncate()

    Coerces the invocant (or in sub form, its argument) to Numeric, and rounds it towards zero.

    say 1.2.truncate;       # OUTPUT: «1␤» 
    say truncate -1.2;      # OUTPUT: «-1␤» 

    (Cool) routine ord

    Defined as:

    sub ord(Str(Cool))
    method ord()

    Coerces the invocant (or in sub form, its argument) to Str, and returns the Unicode code point number of the first code point.

    say 'a'.ord;            # OUTPUT: «97␤» 

    The inverse operation is chr.

    Mnemonic: returns an ordinal number

    (Cool) method path

    Defined as:

    method path()

    DEPRECATED. Existed only in the Rakudo implementation and isn't part of any language released. Will issue deprecation warnings in future language versions and eventually will be removed entirely.

    Stringifies the invocant and converts it to IO::Path object. Use the .IO method instead.

    (Cool) routine chr

    Defined as:

    sub chr(Int(Cool))
    method chr()

    Coerces the invocant (or in sub form, its argument) to Int, interprets it as a Unicode code points, and returns a string made of that code point.

    say '65'.chr;       # OUTPUT: «A␤» 

    The inverse operation is ord.

    Mnemonic: turns an integer into a character.

    (Cool) routine chars

    Defined as:

    sub chars(Str(Cool))
    method chars()

    Coerces the invocant (or in sub form, its argument) to Str, and returns the number of characters in the string. Please note that on the JVM, you currently get codepoints instead of graphemes.

    say 'møp'.chars;    # OUTPUT: «3␤» 
    say 'ã̷̠̬̊'.chars;     # OUTPUT: «1␤» 
    say '👨‍👩‍👧‍👦🏿'.chars;    # OUTPUT: «1␤» 

    Graphemes are user visible characters. That is, this is what the user thinks of as a “character”.

    Graphemes can contain more than one codepoint. Typically the number of graphemes and codepoints differs when Prepend or Extend characters are involved (also known as Combining characters), but there are many other cases when this may happen. Another example is \c[ZWJ] (Zero-width joiner).

    You can check Grapheme_Cluster_Break property of a character in order to see how it is going to behave:

    say ã̷̠̬̊.uniprops(Grapheme_Cluster_Break); # OUTPUT: «(Other Extend Extend Extend Extend)␤» 
    say 👨‍👩‍👧‍👦🏿.uniprops(Grapheme_Cluster_Break); # OUTPUT: «(E_Base_GAZ ZWJ E_Base_GAZ ZWJ E_Base_GAZ ZWJ E_Base_GAZ E_Modifier)␤» 

    You can read more about graphemes in the Unicode Standard, which Perl 6 tightly follows, using a method called NFG, normal form graphemes for efficiently representing them.

    (Cool) routine codes

    Defined as:

    sub codes(Str(Cool))
    method codes()

    Coerces the invocant (or in sub form, its argument) to Str, and returns the number of Unicode code points.

    say 'møp'.codes;    # OUTPUT: «3␤» 

    The same result will be obtained with

    say +'møp'.ords;    # OUTPUT: «3␤» 

    ords first obtains the actual codepoints, so there might be a difference in speed.

    (Cool) routine flip

    Defined as:

    sub flip(Str(Cool))
    method flip()

    Coerces the invocant (or in sub form, its argument) to Str, and returns a reversed version.

    say 421.flip;       # OUTPUT: «124␤» 

    (Cool) routine trim

    Defined as:

    sub trim(Str(Cool))
    method trim()

    Coerces the invocant (or in sub form, its argument) to Str, and returns the string with both leading and trailing whitespace stripped.

    my $stripped = '  abc '.trim;
    say "<$stripped>";          # OUTPUT: «<abc>␤» 

    (Cool) routine trim-leading

    Defined as:

    sub trim-leading(Str(Cool))
    method trim-leading()

    Coerces the invocant (or in sub form, its argument) to Str, and returns the string with leading whitespace stripped.

    my $stripped = '  abc '.trim-leading;
    say "<$stripped>";          # OUTPUT: «<abc >␤» 

    (Cool) routine trim-trailing

    Defined as:

    sub trim-trailing(Str(Cool))
    method trim-trailing()

    Coerces the invocant (or in sub form, its argument) to Str, and returns the string with trailing whitespace stripped.

    my $stripped = '  abc '.trim-trailing;
    say "<$stripped>";          # OUTPUT: «<  abc>␤» 

    (Cool) routine lc

    Defined as:

    sub lc(Str(Cool))
    method lc()

    Coerces the invocant (or in sub form, its argument) to Str, and returns it case-folded to lower case.

    say "ABC".lc;       # OUTPUT: «abc␤» 

    (Cool) routine uc

    Defined as:

    sub uc(Str(Cool))
    method uc()

    Coerces the invocant (or in sub form, its argument) to Str, and returns it case-folded to upper case (capital letters).

    say "Abc".uc;       # OUTPUT: «ABC␤» 

    (Cool) routine fc

    Defined as:

    sub fc(Str(Cool))
    method fc()

    Coerces the invocant (or in sub form, its argument) to Str, and returns the result a Unicode "case fold" operation suitable for doing caseless string comparisons. (In general, the returned string is unlikely to be useful for any purpose other than comparison.)

    say "groß".fc;       # OUTPUT: «gross␤» 

    (Cool) routine tc

    Defined as:

    sub tc(Str(Cool))
    method tc()

    Coerces the invocant (or in sub form, its argument) to Str, and returns it with the first letter case-folded to title case (or where not available, upper case).

    say "abC".tc;       # OUTPUT: «AbC␤» 

    (Cool) routine tclc

    Defined as:

    sub tclc(Str(Cool))
    method tclc()

    Coerces the invocant (or in sub form, its argument) to Str, and returns it with the first letter case-folded to title case (or where not available, upper case), and the rest of the string case-folded to lower case.

    say 'abC'.tclc;     # OUTPUT: «Abc␤» 

    (Cool) routine wordcase

    Defined as:

    sub wordcase(Str(Cool$input:&filter = &tclcMu :$where = True)
    method wordcase(:&filter = &tclcMu :$where = True)

    Coerces the invocant (or in sub form, the first argument) to Str, and filters each word that smartmatches against $where through the &filter. With the default filter (first character to upper case, rest to lower) and matcher (which accepts everything), this title-cases each word:

    say "perl 6 programming".wordcase;      # OUTPUT: «Perl 6 Programming␤» 

    With a matcher:

    say "have fun working on perl".wordcase(:where({ .chars > 3 }));
                                            # Have fun Working on Perl 

    With a customer filter too:

    say "have fun working on perl".wordcase(:filter(&uc), :where({ .chars > 3 }));
                                            # HAVE fun WORKING on PERL 

    (Cool) routine samecase

    Defined as:

    sub samecase(Cool $stringCool $pattern)
    method samecase(Cool:D: Cool $pattern)

    Coerces the invocant (or in sub form, the first argument) to Str, and returns a copy of $string with case information for each individual character changed according to $pattern.

    Note: The pattern string can contain three types of characters, i.e. uppercase, lowercase and caseless. For a given character in $pattern its case information determines the case of the corresponding character in the result.

    If $string is longer than $pattern, the case information from the last character of $pattern is applied to the remaining characters of $string.

    say "perL 6".samecase("A__a__"); # OUTPUT: «Perl 6␤» 
    say "pERL 6".samecase("Ab");     # OUTPUT: «Perl 6␤» 

    (Cool) routine uniprop

    Defined as:

    multi sub uniprop(Str:D|c)
    multi sub uniprop(Int:D $code)
    multi sub uniprop(Int:D $codeStringy:D $propname)
    multi method uniprop(|c)

    Returns the unicode property of the first character. If no property is specified returns the General Category. Returns a Bool for Boolean properties.

    say 'a'.uniprop;               # OUTPUT: «Ll␤» 
    say '1'.uniprop;               # OUTPUT: «Nd␤» 
    say 'a'.uniprop('Alphabetic'); # OUTPUT: «True␤» 
    say '1'.uniprop('Alphabetic'); # OUTPUT: «False␤» 

    (Cool) sub uniprops

    Defined as:

    sub uniprops(Str:D $strStringy:D $propname = "General_Category")

    Interprets the invocant as a Str, and returns the unicode property for each character as a Seq. If no property is specified returns the General Category. Returns a Bool for Boolean properties. Similar to uniprop

    (Cool) routine uniname

    Defined as:

    sub uniname(Str(Cool--> Str)
    method uniname(--> Str)

    Interprets the invocant or first argument as a Str, and returns the Unicode codepoint name of the first codepoint of the first character. See uninames for a routine that works with multiple codepoints, and uniparse for the opposite direction.

    # Camelia in Unicode 
    say »ö«.uniname;
    # OUTPUT: «"RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK"␤» 
    say "Ḍ̇".uniname# Note, doesn't show "COMBINING DOT ABOVE" 
    # OUTPUT: «"LATIN CAPITAL LETTER D WITH DOT BELOW"␤» 
     
    # Find the char with the longest Unicode name. 
    say (0..0x1FFFF).sort(*.uniname.chars)[*-1].chr.uniname;
    # OUTPUT: ««ARABIC LIGATURE UIGHUR KIRGHIZ YEH WITH HAMZA ABOVE WITH ALEF MAKSURA INITIAL FORM␤»␤» 

    (Cool) routine uninames

    Defined as:

    sub uninames(Str:D)
    method uninames()

    Returns of a Seq of Unicode names for the all the codepoints in the Str provided.

    say »ö«.uninames.perl;
    # OUTPUT: «("RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK", "LATIN SMALL LETTER O WITH DIAERESIS", "LEFT-POINTING DOUBLE ANGLE QUOTATION MARK").Seq␤» 

    Note this example, which gets a Seq where each element is a Seq of all the codepoints in that character.

    say "Ḍ̇'oh".comb>>.uninames.perl;
    # OUTPUT: «(("LATIN CAPITAL LETTER D WITH DOT BELOW", "COMBINING DOT ABOVE").Seq, ("APOSTROPHE",).Seq, ("LATIN SMALL LETTER O",).Seq, ("LATIN SMALL LETTER H",).Seq)␤» 

    See uniparse for the opposite direction.

    (Cool) routine unimatch

    Defined as:

    multi sub unimatch(Str:D $str|c)
    multi unimatch(Int:D $codeStringy:D $pvalnameStringy:D $propname = $pvalname)

    Checks if the given integer codepoint or the first letter of the string given have a unicode property equal to the value you give. If you supply the Unicode property to be checked it will only return True if that property matches the given value.

    say unimatch 'A''Latin';           # OUTPUT: «True␤» 
    say unimatch 'A''Latin''Script'# OUTPUT: «True␤» 
    say unimatch 'A''Ll';              # OUTPUT: «True␤» 

    (Cool) routine chop

    Defined as:

    sub chop(Str(Cool))
    method chop()

    Coerces the invocant (or in sub form, its argument) to Str, and returns it with the last character removed.

    say 'perl'.chop;                        # OUTPUT: «per␤» 

    (Cool) routine chomp

    Defined as:

    sub chomp(Str(Cool))
    method chomp()

    Coerces the invocant (or in sub form, its argument) to Str, and returns it with the last character removed, if it is a logical newline.

    say 'ab'.chomp.chars;                   # OUTPUT: «2␤» 
    say "a\n".chomp.chars;                  # OUTPUT: «1␤» 

    (Cool) routine substr

    Defined as:

    sub substr(Str(Cool$str|c)
    method substr(|c)

    Coerces the invocant (or in the sub form, the first argument) to Str, and calls Str.substr with the arguments.

    (Cool) routine substr-rw

    Defined as:

    multi method substr-rw(|) is rw
    multi sub substr-rw(|) is rw

    Coerces the invocant (or in the sub form, the first argument) to Str, and calls Str.substr-rw with the arguments.

    (Cool) routine ords

    Defined as:

    sub ords(Str(Cool$str)
    method ords()

    Coerces the invocant (or in the sub form, the first argument) to Str, and returns a list of Unicode codepoints for each character.

    say "Camelia".ords;              # OUTPUT: «67 97 109 101 108 105 97␤» 
    say ords 10;                     # OUTPUT: «49 48␤» 

    This is the list-returning version of ord. The inverse operation in chrs. If you are only interested in the number of codepoints, codes is a possibly faster option.

    (Cool) routine chrs

    Defined as:

    sub chrs(*@codepoints --> Str:D)
    method chrs()

    Coerces the invocant (or in the sub form, the argument list) to a list of integers, and returns the string created by interpreting each integer as a Unicode codepoint, and joining the characters.

    say <67 97 109 101 108 105 97>.chrs;   # OUTPUT: «Camelia␤» 

    This is the list-input version of chr. The inverse operation is ords.

    (Cool) routine split

    Defined as:

    multi sub    split(  Str:D $delimiterStr(Cool$input$limit = Inf:$k:$v:$kv:$p:$skip-empty)
    multi sub    split(Regex:D $delimiterStr(Cool$input$limit = Inf:$k:$v:$kv:$p:$skip-empty)
    multi sub    split(@delimitersStr(Cool$input$limit = Inf:$k:$v:$kv:$p:$skip-empty)
    multi method split(  Str:D $delimiter$limit = Inf:$k:$v:$kv:$p:$skip-empty)
    multi method split(Regex:D $delimiter$limit = Inf:$k:$v:$kv:$p:$skip-empty)
    multi method split(@delimiters$limit = Inf:$k:$v:$kv:$p:$skip-empty)

    [2]

    Coerces the invocant (or in the sub form, the second argument) to Str, and splits it into pieces based on delimiters found in the string.

    If $delimiter is a string, it is searched for literally and not treated as a regex. You can also provide multiple delimiters by specifying them as a list; mixing Cool and Regex objects is OK.

    say split(';'"a;b;c").perl;               # OUTPUT: «("a", "b", "c")␤» 
    say split(';'"a;b;c"2).perl;            # OUTPUT: «("a", "b;c").Seq␤» 
     
    say split(';'"a;b;c,d").perl;             # OUTPUT: «("a", "b", "c,d")␤» 
    say split(/\;/"a;b;c,d").perl;            # OUTPUT: «("a", "b", "c,d")␤» 
    say split(/<[;,]>/"a;b;c,d").perl;        # OUTPUT: «("a", "b", "c", "d")␤» 
     
    say split(['a', /b+/4], '1a2bb345').perl# OUTPUT: «("1", "2", "3", "5")␤» 

    By default, split omits the matches, and returns a list of only those parts of the string that did not match. Specifying one of the :k, :v, :kv, :p adverbs changes that. Think of the matches as a list that is interleaved with the non-matching parts.

    The :v interleaves the values of that list, which will be either Match objects, if a Regex was used as a matcher in the split, or Str objects, if a Cool was used as matcher. If multiple delimiters are specified, Match objects will be generated for all of them, unless all of the delimiters are Cool.

    say 'abc'.split(/b/:v);               # OUTPUT: «(a 「b」 c)␤» 
    say 'abc'.split('b':v);               # OUTPUT: «(a b c)␤» 

    :k interleaves the keys, that is, the indexes:

    say 'abc'.split(/b/:k);               # OUTPUT: «(a 0 c)␤» 

    :kv adds both indexes and matches:

    say 'abc'.split(/b/:kv);               # OUTPUT: «(a 0 「b」 c)␤» 

    and :p adds them as Pairs, using the same types for values as :v does:

    say 'abc'.split(/b/:p);               # OUTPUT: «(a 0 => 「b」 c)␤» 
    say 'abc'.split('b':p);               # OUTPUT: «(a 0 => b c)␤» 

    You can only use one of the :k, :v, :kv, :p adverbs in a single call to split.

    Note that empty chunks are not removed from the result list. For that behavior, use the :skip-empty named argument:

    say ("f,,b,c,d".split: /","/             ).perl;  # OUTPUT: «("f", "", "b", "c", "d")␤» 
    say ("f,,b,c,d".split: /","/:skip-empty).perl;  # OUTPUT: «("f", "b", "c", "d")␤» 

    (Cool) routine lines

    Defined as:

    sub lines(Str(Cool))
    method lines()

    Coerces the invocant (and in sub form, the argument) to Str, decomposes it into lines (with the newline characters stripped), and returns the list of lines.

    say lines("a\nb\n").join('|');          # OUTPUT: «a|b␤» 
    say "some\nmore\nlines".lines.elems;    # OUTPUT: «3␤» 

    This method can be used as part of an IO::Path to process a file line-by-line, since IO::Path objects inherit from Cool, e.g.:

    for 'huge-csv'.IO.lines -> $line {
        # Do something with $line 
    }
     
    # or if you'll be processing later 
    my @lines = 'huge-csv'.IO.lines;

    Without any arguments, sub lines operates on $*ARGFILES, which defaults to $*IN in the absence of any filenames.

    To modify values in place use is copy to force a writable container.

    for $*IN.lines -> $_ is copy { s/(\w+)/{$0 ~ $0}/.say }

    (Cool) method words

    Defined as:

    method words(Cool:D: |c)

    Coerces the invocant (or first argument, if it is called as a subroutine) to Str, and returns a list of words that make up the string. Check Str.words for additional arguments and its meaning.

    say <The quick brown fox>.words.join('|');   # OUTPUT: «The|quick|brown|fox␤» 
    say <The quick brown fox>.words(2).join('|');# OUTPUT: «The|quick␤» 

    Cool is the base class for many other classes, and some of them, like Match, can be converted to a string. This is what happens in this case:

    say ( "easy come, easy goes" ~~ m:g/(ea\w+)/).words(Inf);
    # OUTPUT: «(easy easy)␤» 
    say words"easy come, easy goes" ~~ m:g/(ea\w+)/ , ∞);
    # OUTPUT: «(easy easy)␤» 

    The example above illustrates two of the ways words can be invoked, with the first argument turned into invocant by its signature. Of course, Inf is the default value of the second argument, so in both cases (and forms) it can be simply omited.

    Only whitespace (including no-break space) counts as word boundaries

    say <Don't we ♥ Perl 6>.words.join('|');# OUTPUT: «Don't|we|♥|Perl|6␤» 

    In this case, Perl 6 includes an (visible only in the source) no-break space; words still splits the (resulting) Str on it, even if the original array only had 4 elements:

    say <Don't we ♥ Perl 6>.join("|");# OUTPUT: «Don't|we|♥|Perl 6␤» 

    Please see Str.words for more examples and ways to invoke it.

    (Cool) routine comb

    Defined as:

    multi sub comb(Regex $matcherCool $input$limit = *)
    multi sub comb(Str $matcherCool $input$limit = *)
    multi sub comb(Int:D $sizeCool $input$limit = *)
    multi method comb(|c)

    Returns a list of all (or if supplied, at most $limit) matches of the invocant (method form) or the second argument (sub form) against the Regex, string or defined number.

    say "6 or 12".comb(/\d+/).join("");           # OUTPUT: «6, 12␤» 
    say comb(/\d <[1..9]> /,(11..30)).join("--");
    # OUTPUT: 
    # «11--12--13--14--15--16--17--18--19--21--22--23--24--25--26--27--28--29␤» 

    The second statement exemplifies the first form of comb, with a Regex that excludes multiples of ten, and a Range (which is Cool) as $input. comb stringifies the Range before applying .comb on the resulting string. Check Str.comb for its effect on different kind of input strings. When the first argument is an integer, it indicates the (maximum) size of the chunks the input is going to be divided in

    say comb(3,[3,33,333,3333]).join("*");# OUTPUT: «3 3*3 3*33 *333*3␤» 

    In this case the input is a list, which after transformation to Str (which includes the spaces) is divided in chunks of size 3.

    (Cool) method contains

    Defined as:

    method contains(Cool:D: |c)

    Coerces the invocant Str, and calls Str.contains on it. Please refer to that version of the method for arguments and general syntax.

    say 123.contains("2")# OUTPUT: «True␤» 

    Since Int is a subclass of Cool, 123 is coerced to a Str and then contains is called on it.

    say (1,1* + * … * > 250).contains(233)# OUTPUT: «True␤» 

    Seqs are also subclasses of Cool, and they are stringified to a comma-separated form. In this case we are also using an Int, which is going to be stringified also; "233" is included in that sequence, so it returns True. Please note that this sequence is not lazy; the stringification of lazy sequences does not include each and every one of their components for obvious reasons.

    (Cool) routine index

    Defined as:

    multi sub index(Cool $sCool $needleCool $pos = 0)
    method    index(Cool:D: |c)

    Coerces the first two arguments (in method form, also counting the invocant) to a Str, and searches for $needle in the string $s starting from $startpos. It returns the offset into the string where $needle was found, and an undefined value if it was not found.

    See the documentation in type Str for examples.

    (Cool) routine rindex

    Defined as:

    multi sub    rindex(Str(Cool$haystackStr(Cool$needleInt(Cool$startpos = $haystack.chars)
    multi method rindex(Str(Cool$haystack: Str(Cool$needleInt(Cool$startpos = $haystack.chars)

    Coerces the first two arguments (including the invocant in method form) to Str and $startpos to Int, and returns the last position of $needle in $haystack not after $startpos. Returns an undefined value if $needle wasn't found.

    See the documentation in type Str for examples.

    (Cool) method match

    Defined as:

    multi method match(Cool:D: $target*%adverbs)

    Coerces the invocant to Str and calls the method match on it.

    (Cool) method fmt

    Defined as:

    method fmt($format = '%s' --> Str:D)

    Uses $format to return a formatted representation of the invocant.

    For more information about formats strings, see sprintf.

    say 11.fmt('This Int equals %03d');               # OUTPUT: «This Int equals 011␤» 
    say '16'.fmt('Hexadecimal %x');                   # OUTPUT: «Hexadecimal 10␤» 

    (Cool) routine roots

    Defined as:

    multi sub roots(Numeric(Cool$xInt(Cool$n)
    multi method roots(Int(Cool$n)

    Coerces the first argument (and in method form, the invocant) to Numeric and the second ($n) to Int, and produces a list of $n Complex $n-roots, which means numbers that, raised to the $nth power, approximately produce the original number.

    For example

    my $original = 16;
    my @roots = $original.roots(4);
    say @roots;
     
    for @roots -> $r {
        say abs($r ** 4 - $original);
    }
     
    # OUTPUT:«2+0i 1.22464679914735e-16+2i -2+2.44929359829471e-16i -3.67394039744206e-16-2i␤» 
    # OUTPUT:«1.77635683940025e-15␤» 
    # OUTPUT:«4.30267170434156e-15␤» 
    # OUTPUT:«8.03651692704705e-15␤» 
    # OUTPUT:«1.04441561648202e-14␤» 

    (Cool) method match

    Defined as:

    method match(|)

    Coerces the invocant to Stringy and calls Str.match.

    (Cool) method subst

    Defined as:

    method subst(|)

    Coerces the invocant to Stringy and calls Str.subst.

    (Cool) method trans

    Defined as:

    method trans(|)

    Coerces the invocant to Str and calls Str.trans

    (Cool) method IO

    Defined as:

    method IO(--> IO::Path:D)

    Coerces the invocant to IO::Path.

    .say for '.'.IO.dir;        # gives a directory listing 

    (Cool) routine EVAL

    Defined as:

    method EVAL(*%_)
    sub EVAL($code where Cool|Blob:$lang = 'perl6')

    If it is invoked as a method, it actually calls the subroutine form with invocant as the first argument, $code, passing along named args, if any; this coerces Cool $code to Str. If $code is a Blob, it'll be processed using the same encoding as the $lang compiler would: for perl6 $lang, uses utf-8; for Perl5, processes using the same rules as perl.

    This works as-is with a literal string parameter. More complex input, such as a variable or string with embedded code, is illegal by default. This can be overridden in any of several ways:

    use MONKEY-SEE-NO-EVAL# Or... 
    use MONKEY;             # shortcut that turns on all MONKEY pragmas 
    use Test;
     
    # any of the above allows: 
    EVAL "say { 5 + 5 }";   # OUTPUT: «10␤» 

    In case the MONKEY-SEE-NO-EVAL pragma is not activated, the compiler will complain with a EVAL is a very dangerous function!!! exception. And it is essentially right, since that will run arbitrary code with the same permissions as the program. You should take care of cleaning the code that is going to pass through EVAL if you activate the MONKEY-SEE-NO-EVAL pragma.

    Please note that you can interpolate to create routine names using quotation, as can be seen in this example or other ways to interpolate to create identifier names. This only works, however, for already declared functions and other objects and is thus safer to use.

    Symbols in the current lexical scope are visible to code in an EVAL.

    my $answer = 42;
    EVAL 'say $answer;';    # OUTPUT: «42␤» 

    However, since the set of symbols in a lexical scope is immutable after compile time, an EVAL can never introduce symbols into the surrounding scope.

    EVAL 'my $lives = 9'say $lives;   # error, $lives not declared 

    Furthermore, the EVAL is evaluated in the current package:

    module M {
        EVAL 'our $answer = 42'
    }
    say $M::answer;         # OUTPUT: «42␤» 

    And also in the current language, meaning any added syntax is available:

    sub infix:<mean>(*@ais assoc<list> {
        @a.sum / @a.elems
    }
    EVAL 'say 2 mean 6 mean 4';     # OUTPUT: «4␤» 

    An EVAL statement evaluates to the result of the last statement:

    sub infix:<mean>(*@ais assoc<list> {
        @a.sum / @a.elems
    }
    say EVAL 'say 1; 2 mean 6 mean 4';         # OUTPUT: «1␤4␤» 

    EVAL is also a gateway for executing code in other languages:

    EVAL "use v5.20; say 'Hello from perl5!'":lang<Perl5>;

    (Cool) sub EVALFILE

    Defined as:

    sub EVALFILE($filename where Blob|Cool:$lang = 'perl6')

    Slurps the specified file and evaluates it. Behaves the same way as EVAL with regard to Blob decoding, scoping, and the $lang parameter. Evaluates to the value produced by the final statement in the file.

    EVALFILE "foo.p6";

    (Cool) routine unpolar

    Defined as:

    method unpolar(Real $angle)
    multi sub unpolar(Real $magReal $angle)

    Returns a Complex with the coordinates corresponding to the angle in radians and magnitude corresponding to the object value or $mag in the case it's being used as a sub

    say 1.unpolar(⅓*pi);
    # OUTPUT: «0.5000000000000001+0.8660254037844386i␤» 

    (Cool) routine printf

    Defined as:

    method printf (*@args)
    multi sub printf(Cool:D $format*@args)

    As a method, takes the object as a format using the same language as Str.sprintf; as a sub, its first argument will be the format string, and the rest of the arguments will be substituted in the format following the format conventions.

    "%s is %s".printf("þor""mighty");# OUTPUT: «þor is mighty» 
    printf"%s is %s""þor""mighty"); # OUTPUT: «þor is mighty» 

    (Cool) routine sprintf

    Defined as:

    method sprintf(*@args)
    multi sub sprintf(Cool:D $format*@args)

    Formats and outputs a string, following the same language as Str.sprintf, using as such format either the object (if called in method form) or the first argument (if called as a routine)

    sprintf"%s the %d%s""þor"1"st").put#OUTPUT: «þor the 1st␤» 
    sprintf"%s is %s""þor""mighty").put;   # OUTPUT: «þor is mighty␤» 
    "%s's weight is %.2f %s".sprintf"Mjölnir"3.3392"kg").put;
    # OUTPUT: «Mjölnir's weight is 3.34 kg␤»